The equation of the hyperbola with directrices at x = ±2 and foci at (5, 0) and (−5, 0) is ![\frac{x^2}{10} + \frac{y^2}{15} = 1](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E2%7D%7B10%7D%20%2B%20%5Cfrac%7By%5E2%7D%7B15%7D%20%3D%201)
<h3>How to determine the equation of the hyperbola?</h3>
The given parameters are:
- Directrices at x = ±2
- Foci at (5, 0) and (−5, 0)
The foci of a hyperbola are represented as:
Foci = (k ± c, h)
The center is:
Center = (h,k)
And the directrix is:
Directrix, x = h ± a²/c
By comparison, we have:
k ± c = ±5
h = 0
h ± a²/c = ±2
Substitute h = 0 in h ± a²/c = ±2
0 ± a²/c = ±2
This gives
a²/c = 2
Multiply both sides by c
a² = 2c
k ± c = ±5 means that:
k ± c = 0 ± 5
By comparison, we have:
k = 0 and c = 5
Substitute c = 5 in a² = 2c
a² = 2 * 5
a² = 10
Next, we calculate b using:
b² = c² - a²
This gives
b² = 5² - 10
Evaluate
b² = 15
The hyperbola is represented as:
![\frac{(x - k)^2}{a^2} + \frac{(y - h)^2}{b^2} = 1](https://tex.z-dn.net/?f=%5Cfrac%7B%28x%20-%20k%29%5E2%7D%7Ba%5E2%7D%20%2B%20%5Cfrac%7B%28y%20-%20h%29%5E2%7D%7Bb%5E2%7D%20%3D%201)
So, we have:
![\frac{(x - 0)^2}{10} + \frac{(y - 0)^2}{15} = 1](https://tex.z-dn.net/?f=%5Cfrac%7B%28x%20-%200%29%5E2%7D%7B10%7D%20%2B%20%5Cfrac%7B%28y%20-%200%29%5E2%7D%7B15%7D%20%3D%201)
Evaluate
![\frac{x^2}{10} + \frac{y^2}{15} = 1](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E2%7D%7B10%7D%20%2B%20%5Cfrac%7By%5E2%7D%7B15%7D%20%3D%201)
Hence, the equation of the hyperbola is ![\frac{x^2}{10} + \frac{y^2}{15} = 1](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E2%7D%7B10%7D%20%2B%20%5Cfrac%7By%5E2%7D%7B15%7D%20%3D%201)
Read more about hyperbola at:
brainly.com/question/3405939
#SPJ1
30÷25=1.2
she reads 1 page in 1.2 seconds
there fore 1.2×200=240
the answer is 240 seconds
Answer:
k = 3.
Step-by-step explanation:
By the Factor Theorem. if x+a is a factor of f(x) then f(-a) = 0.
Here we use f(-1):
f(-1) = (-1)^3 + 2(-1) + k = 0
-1 - 2 + k = 0
k = 3.
Answer:
8 to 27
Step-by-step explanation: