Answer:
lower activation energy
brainliest is appreciated
Explanation:
Catalysts make such a breaking and rebuilding happen more efficiently. They do this by lowering the activation energy for the chemical reaction. Activation energy is the amount of energy needed to allow the chemical reaction to occur. The catalyst just changes the path to the new chemical partnership.2
Skin
20 square feet on average person
The epidermis , the dermis & subcutaneous tissue (hypodermis)
The populations of the species there will go extinct
Glycogen reserves can release glucose for cellular respiration. glycogen reserves are typically found in the muscles and liver.
- The liver and muscles contain the body's "quick" source of energy, known as glycogen stores.
- They go through further metabolism after being converted to glucose.
- After that, glucose can be further digested to release energy both aerobically and anaerobically.
<h3>Glycogen reserves: what are they?</h3>
- When the body doesn't need to consume the glucose for energy, the liver and muscles store it.
- This kind of stored glucose, which is made up of many connected glucose molecules, is known as glycogen.
<h3>How long are glycogen reserves good for?</h3>
- Utilizing the form, you can learn more about nutrition and glycogen.
- But it's helpful to know that once glycogen stores are exhausted, it will take at least 48 hours to fully refill them.
- This necessitates rest throughout the recovery period and a high-carbohydrate diet (60–70% of the energy must come from carbohydrates).
To learn more about glycogen reserves visit:
brainly.com/question/11478490
#SPJ4
In plants, photosynthesis, occurring in chloroplasts, is an anabolic (bond-building) process whereby CO2 and H2O combine with the use of light (photon) energy. This yields O2 and sugar (i.e. glucose). This occurs in 2 phases: light-dependent and dark (Calvin cycle) reactions, which both continually recycle ADP/ATP and NADP/NADPH.
The catabolic (bond-breaking) process in plants is cellular respiration, in which glucose is broken down with O2 by glycolysis (cytoplasm only) and mitochondrial reactions (Krebs cycle and E.T.C.) to yield CO2 and H2O. These reactions recycle ADP/ATP and NAD/NADH. The CO2 and water produced by cellular respiration feed into the photosynthetic processes, and in turn, the O2 and glucose resulting from photosynthesis supply the respiratory reactions.