It will be 42 because of the with times the 2nd highest
11 kl = 11 000 l.
Hope this helps !
Photon
Answer:
x= 3 inch should be turned up on each side
Step-by-step explanation:
Let the height of trough be x.
Width of trough be 12 - 2x.
and length of trough = 120 inch
Volume of trough, V = L×W×H = 120 × (12-2x) × x = 120x(12 - 2x)
For maximum volume, we find V' = 0
i.e 1440 -480x = 0
or x =
or x= 3
Hence x= 3 inch should be turned up on each side
9514 1404 393
Answer:
5x +y = 16
Step-by-step explanation:
Given a point and slope, it often works well to start with the point-slope form of the equation for a line:
y -k = m(x -h) . . . . . . . . line with slope m through point (h, k)
Your point and slope make this ...
y -6 = -5(x -2)
y -6 = -5x +10 . . . . . . eliminate parentheses
5x +y = 16 . . . . . . . . . add 5x+6 to both sides; your standard form equation
Answer: (-∞,-1) ∪ (0,+∞)
Step-by-step explanation: The representation fog(x) is a representation of composite function, meaning one depends on the other.
In this case, fog(x) means:
fog(x) = f(g(x))
fog(x) = ![3(x+\frac{1}{x} )-\frac{1}{x+\frac{1}{x} } -4](https://tex.z-dn.net/?f=3%28x%2B%5Cfrac%7B1%7D%7Bx%7D%20%29-%5Cfrac%7B1%7D%7Bx%2B%5Cfrac%7B1%7D%7Bx%7D%20%7D%20-4)
![fog(x)=3x+\frac{3}{x} -\frac{1}{\frac{x^{2}+x}{x} } -4](https://tex.z-dn.net/?f=fog%28x%29%3D3x%2B%5Cfrac%7B3%7D%7Bx%7D%20-%5Cfrac%7B1%7D%7B%5Cfrac%7Bx%5E%7B2%7D%2Bx%7D%7Bx%7D%20%7D%20-4)
![fog(x)=3x+\frac{3}{x} -\frac{x}{x^{2}+x} -4](https://tex.z-dn.net/?f=fog%28x%29%3D3x%2B%5Cfrac%7B3%7D%7Bx%7D%20-%5Cfrac%7Bx%7D%7Bx%5E%7B2%7D%2Bx%7D%20-4)
![fog(x)=\frac{3x^{2}(x^{2}+x)+3(x^{2}+x)-x-4x(x^{2}+x)}{x(x^{2}+x)}](https://tex.z-dn.net/?f=fog%28x%29%3D%5Cfrac%7B3x%5E%7B2%7D%28x%5E%7B2%7D%2Bx%29%2B3%28x%5E%7B2%7D%2Bx%29-x-4x%28x%5E%7B2%7D%2Bx%29%7D%7Bx%28x%5E%7B2%7D%2Bx%29%7D)
![fog(x)=\frac{3x^{4}+3x^{3}+3x^{2}+3x-x-4x^{3}+4x^{2}}{x(x^{2}+x)}](https://tex.z-dn.net/?f=fog%28x%29%3D%5Cfrac%7B3x%5E%7B4%7D%2B3x%5E%7B3%7D%2B3x%5E%7B2%7D%2B3x-x-4x%5E%7B3%7D%2B4x%5E%7B2%7D%7D%7Bx%28x%5E%7B2%7D%2Bx%29%7D)
![fog(x)=\frac{3x^{4}-x^{3}-x^{2}+2x}{x(x^{2}+x)}](https://tex.z-dn.net/?f=fog%28x%29%3D%5Cfrac%7B3x%5E%7B4%7D-x%5E%7B3%7D-x%5E%7B2%7D%2B2x%7D%7Bx%28x%5E%7B2%7D%2Bx%29%7D)
This is the function fog(x).
The domain of a function is all the values the independent variable can assume.
For fog(x), denominator can be zero, so:
![x(x^{2}+x) \neq 0](https://tex.z-dn.net/?f=x%28x%5E%7B2%7D%2Bx%29%20%5Cneq%200)
If x = 0, the function doesn't exist.
![x^{2}+x \neq0](https://tex.z-dn.net/?f=x%5E%7B2%7D%2Bx%20%5Cneq0)
![x(x+1) \neq0](https://tex.z-dn.net/?f=x%28x%2B1%29%20%5Cneq0)
![x+1\neq0](https://tex.z-dn.net/?f=x%2B1%5Cneq0)
<u>Therefore, the domain of this function is: </u><u>-∞ < -1 or x > 0</u>