Answer:It should be x=1 not sure thought.
Step-by-step explanation:
Answer:
8
Step-by-step explanation:
<h2>
Answer with explanation:</h2>
It is given that:
f: R → R is a continuous function such that:
∀ x,y ∈ R
Now, let us assume f(1)=k
Also,
( Since,
f(0)=f(0+0)
i.e.
f(0)=f(0)+f(0)
By using property (1)
Also,
f(0)=2f(0)
i.e.
2f(0)-f(0)=0
i.e.
f(0)=0 )
Also,
i.e.
f(2)=f(1)+f(1) ( By using property (1) )
i.e.
f(2)=2f(1)
i.e.
f(2)=2k
f(m)=f(1+1+1+...+1)
i.e.
f(m)=f(1)+f(1)+f(1)+.......+f(1) (m times)
i.e.
f(m)=mf(1)
i.e.
f(m)=mk
Now,

Also,
i.e. 
Then,

(
Now, as we know that:
Q is dense in R.
so Э x∈ Q' such that Э a seq
belonging to Q such that:
)
Now, we know that: Q'=R
This means that:
Э α ∈ R
such that Э sequence
such that:

and


( since
belongs to Q )
Let f is continuous at x=α
This means that:

This means that:

This means that:
f(x)=kx for every x∈ R
Answer:
Step-by-step explanation:
1 sandwich is 6.25 (because 31.25/5)
2 sandwiches is 12.5
3 sandwiches are 18.75
4 sandwiches are 25
5 sandwiches are 31.25
6 sandwiches are 37.5
Amy - 8s + 12
8(6.25) +12 = 62
Amy paid $62.
Bob - 8(s + 2)
8(6.25 + 2) = 66
Bob pays $66.
Cathy - 4(2s + 3)
4(2 x 6.25 + 3) = 62
Cathy paid $62.