Answer:
The spring's maximum compression will be 2.0 cm
Explanation:
There are two energies in this problem, kinetic energy
and elastic potential energy
(with m the mass, v the velocity, x the compression and k the spring constant. ) so the total mechanical energy at every moment is the sum of the two energies:

Here we have a situation where the total mechanical energy of the system is conserved because there are no dissipative forces (there's no friction), so:


Note that at the initial moment where the hockey puck has not compressed the spring all the energy of the system is kinetic energy, but for a momentary stop all the energy of the system is potential elastic energy, so we have:

(1)
Due conservation of energy the equality (1) has to be maintained, so if we let k and m constant x has to increase the same as v to maintain the equality. Therefore, if we increase velocity to 2v we have to increase compression to 2x to conserve the equality. This is 2(1.0) = 2.0 cm