ANSWERS:
1.

⇒ 2KCl +

2.

⇒

3.

⇒

4.

⇒

5.

⇒

I have attached my work for 1-3. I would like to see if you can get 4 and 5 on your own. but, if you are struggling/copnfused please let me know in the comments! :)
Answer:
Both sodium and calcium.
Explanation:
The membrane potential is maintained inside and outside of the cell due to the unequal distribution of the different ions. This membrane potential difference is important for the generation of action potential.
The resting membrane potential is around +30 mV. This is due to the presence of potassium ions. The sodium and calcium ions must enter in the cell to change this membrane potential and generates the action potential in the body.
Thus, the correct answer is option (3).
Answer: 5.18
Explanation:
Mathematically, pOH is expressed as
pH = -log(OH-)
where OH-is the concentration of hydroxide ion
So, pOH calculations are as follows
pOH = -log(1.50x10-9 M)
pOH = -(-8.82)
pOH = 8.82 [the two minus signs cancelled out]
Since pOH = 8.82; apply the formula
pH + pOH = 14 to get pH of the solution
Hence, pH + pOH = 14
pH + 8.82 = 14
pH = 14 - 8.82
pH = 5.18
Thus, the pH of a solution with a 1.50x10-9 M hydroxide ion concentration is 5.18 (slightly acidic)
Answer:
Baking Soda, Vinegar, Ammonia
Explanation:
The rate law for the reaction : r=k.[A]²
<h3>Further explanation</h3>
Given
Reaction
A ⟶ B + C
Required
The rate law
Solution
The rate law is a chemical equation that shows the relationship between reaction rate and the concentration / pressure of the reactants
For the second-order reaction it can be:
1. the square of the concentration of one reactant.
![\tt r=k[A]^2](https://tex.z-dn.net/?f=%5Ctt%20r%3Dk%5BA%5D%5E2)
2. the product of the concentrations of two reactants.
![\tt r=k[A][B]](https://tex.z-dn.net/?f=%5Ctt%20r%3Dk%5BA%5D%5BB%5D)
And the reaction should be(for second order) :
2A ⟶ B + C
Thus, for reaction above (reactant consumption rate) :
![\tt r=-\dfrac{\Delta A}{2\Delta t}=k[A]^2](https://tex.z-dn.net/?f=%5Ctt%20r%3D-%5Cdfrac%7B%5CDelta%20A%7D%7B2%5CDelta%20t%7D%3Dk%5BA%5D%5E2)