Answer:
To calculate the pressure when temperature and volume has changed, we use the equation given by combined gas law. The equation follows:
\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}
T
1
P
1
V
1
=
T
2
P
2
V
2
where,
P_1,V_1\text{ and }T_1P
1
,V
1
and T
1
are the initial pressure, volume and temperature of the gas
P_2,V_2\text{ and }T_2P
2
,V
2
and T
2
are the final pressure, volume and temperature of the gas
We are given:
\begin{gathered}P_1=760mmHg\\V_1=175L\\T_1=15^oC=[15+273]K=288K\\P_2=640mmHg\\V_2=198L\\T_2=?K\end{gathered}
P
1
=760mmHg
V
1
=175L
T
1
=15
o
C=[15+273]K=288K
P
2
=640mmHg
V
2
=198L
T
2
=?K
Putting values in above equation, we get:
\begin{gathered}\frac{760mmHg\times 175L}{288K}=\frac{640mmHg\times 198L}{T_2}\\\\T_2=274K\end{gathered}
288K
760mmHg×175L
=
T
2
640mmHg×198L
T
2
=274K
Hence, the temperature when the volume and pressure has changed is 274 K
FeS is an example of an ionic compound as in the formula there is a metal of Fe iron chemically bonded to the nonmetal S sulphur. Resulting in a strong electrostatic attraction due to the transfer of valence electrons from the iron to the Sulphur.
The atomic structure of an atom is well explained experimentally by different experiments like Rutherford's experiment etc
Based on these experiments it was determined that the atoms contains a central part known as nucleus which contains the positively charged sub atomic particles protons and neutral sub atomic particles neutron.
There is empty space around the nucleus in which negatively charged subatomic particles are found known as electrons.
So answers are
a) protons
b) neutrons
c) electrons