Its okay my friend. you dont need to over stress it.
The pH of the solution in which one normal adult dose aspirin is dissolved is : 2.7
Given data :
mass of aspirin = 640 mg = 0.640 g
volume of water = 10 ounces = 0.295735 L
molar mass of aspirin = 180.16 g/mol
moles of aspirin = mass / molar mass = 0.00355 mol
<h3>Determine the pH of the solution </h3>
First step : <u>calculate the concentration of aspirin</u>
= moles of Aspirin / volume of water
= 0.00355 / 0.295735
= 0.012 M
Given that pKa of Aspirin = 3.5
pKa = -logKa
therefore ; Ka =
= 
From the Ice table
=
=
given that the value of Ka is small we will ignore -x
x² =
x =
Therefore
[ H⁺ ] =
given that
pH = - Log [ H⁺ ]
= - ( -3 + log 1.948 )
= 2.71 ≈ 2.7
Hence we can conclude that The pH of the solution in which one normal adult dose aspirin is dissolved is : 2.7
Learn more about Aspirin : brainly.com/question/2070753
Answer:
Hydration (of an alkene)
Mechanism : Electrophilic addition.
Explanation:
The speed of molecules increases when temperature is increased as it will result in more number of collisions between the molecules. Thus, there will be increase in kinetic energy of molecules and increase in the speed of solvent molecules.
Whereas on decreasing the temperature, the kinetic energy of molecules will decrease. This will result in less number of collisions between the molecules. Therefore, the speed of solvent molecules will slow down.