Find the linear regression equation for the transformed data. x=1,2,3,4,5 y=13,19,37,91,253 log y=1.114,1.279,1.568,1.959,2,403
Talja [164]
Answer:
The answer is OPTION (D)log(y)=0.326x+0.687
<h2>
Linear regression:</h2>
It is a linear model, e.g. a model that assumes a linear relationship between the input variables (x) and the single output variable (y)
The Linear regression equation for the transformed data:
We transform the predictor (x) values only. We transform the response (y) values only. We transform both the predictor (x) values and response (y) values.
(1, 13) 1.114
(2, 19) 1.279
(3, 37) 1.568
(4, 91) 1.959
(5, 253) 2.403
X Y Log(y)
1 13 1.114
2 19 1.740
3 37 2.543
4 91 3.381
5 253 4.226
Sum of X = 15
Sum of Y = 8.323
Mean X = 3
Mean Y = 1.6646
Sum of squares (SSX) = 10
Sum of products (SP) = 3.258
Regression Equation = ŷ = bX + a
b = SP/SSX = 3.26/10 = 0.3258
a = MY - bMX = 1.66 - (0.33*3) = 0.6872
ŷ = 0.3258X + 0.6872
The graph is plotted below:
The linear regression equation is log(y)=0.326x+0.687
Learn more about Linear regression equation here:
brainly.com/question/3532703
#SPJ10
That means there would be 28 in California and still 12 in Nevada or if California takes from Nevada it would be California 28 and Nevada 2
Answer:
32x+32
Step-by-step explanation:
In the distributive property, you have to multiply the thing outside the parenthesis to each term in the parenthesis. -4*-8x=32x and -4*-8=32, so the answer would be 32x+32
Answer:
21+/-sqrt(253)=x
So one value for x is 21+sqrt(253)
and another is 21-sqrt(253)
Problem:
Given (21,7) and (x,1), find all x such that the distance between these two points is 17.
Step-by-step explanation:
Change in x is x-21
Change in y is 7-1=6
distance^2=(change in x)^2+(change in y)^2
17^2=(x-21)^2+(6)^2
289=(x-21)^2+36
Subtract 36 on both sides:
289-36=(x-21)^2
253=(x-21)^2
Take square root of both sides:
+/-sqrt(253)=x-21
Add 21 on both sides:
21+/-sqrt(253)=x
9/15. There are 15 cards and 8 of them are odd and 1 is a 2.