1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madreJ [45]
3 years ago
5

A tray is moved horizontally back and forth in simple harmonic motion at a frequency of f = 2.20 Hz. On this tray is an empty cu

p. Obtain the coefficient of static friction between the tray and the cup, given that the cup begins slipping when the amplitude of the motion is 5.50 10-2 m.
Physics
1 answer:
Kruka [31]3 years ago
6 0

Answer:

Coefficient of friction will be 0.9738

Explanation:

We have given frequency of the motion f = 2.20 Hz

So angular frequency \omega =2\pi f=2\times 3.14\times 2.20=13.816rad/sec

Amplitude of the motion A=5.50\times 10^{-2}m

Maximum acceleration is given by a=\omega ^2A=13.816^2\times 5.50\times 10^{-2}=9.544rad/sec^2

Acceleration due to gravity g=9.8m/sec^2

We know that acceleration is given by a=\mu g

\mu =\frac{a}{g}=\frac{9.544}{9.8}=0.9738

So coefficient of friction will be 0.9738

You might be interested in
A skater of mass 60 kg has an initial velocity of 12 m/s. He slides on ice where the frictional force is 36 N. How far will the
Alexus [3.1K]

Answer:

d = 120 [m]

Explanation:

In order to solve this problem, we must use the theorem of work and energy conservation. Where the energy in the final state (when the skater stops) is equal to the sum of the mechanical energy in the initial state plus the work done on the skater in the initial state.

The mechanical energy is equal to the sum of the potential energy plus the kinetic energy.  As the track is horizontal there is no unevenness, in this way, there is no potential energy.

E₁ + W₁₋₂ = E₂

where:

E₁  = mechanical energy in the initial state [J] (units of Joules)

W₁₋₂ = work done between the states 1 and 2 [J]

E₂  = mechanical energy in the final state = 0

E₁ = Ek = kinetic energy [J]

E₁ = 0.5*m*v²

where:

m = mass = 60 [kg]

v = initial velocity = 12 [m/s]

Now, the work done is given by the product of the friction force by the distance. In this case, the work is negative because the friction force is acting in opposite direction to the movement of the skater.

W₁₋₂ = -f*d

where:

f = friction force = 36 [N]

d = distance [m]

Now we have:

0.5*m*v² - (f*d) = 0

0.5*60*(12)² - (36*d) = 0

4320 = 36*d

d = 120 [m]

7 0
3 years ago
The period of a 440 Hertz sound wave is __ seconds.
snow_lady [41]
The formula relating frequency and period of a wave is simply frequency = 1 / time. Therefore, by rearranging we also see that time = 1 / frequency. The period of a 440 Hertz sound wave is 1 / 440 seconds. The speed of the wave can also be determined very simply using the formula speed = wavelength x frequency. 
8 0
4 years ago
What is angular speed for a roller coaster?
olchik [2.2K]
It depends what rollercoaster your on
3 0
4 years ago
A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves o
aniked [119]

Correct question is;

A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves offers a damping force numerically equal to √2 times the instantaneous velocity. Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 7 ft/s. (Use g = 32 ft/s²)

Answer:

x(t) = 7te^(-2t√2)

Explanation:

We are given;

Weight; W = 8 lbs

mass; m = W/g

g = 32 ft/s²

Thus;

m = 8/32

m = ¼ slugs

From Newton's second law we can write the equation as;

m(d²x/dt²) = -kx - β(dx/dt)

Rearranging this, we have;

(d²x/dt²) + (β/m)(dx/dt) + (k/m)x = 0

Where;

β is damping constant = √2

k is spring constant = W/s

Where s = 8ft - 4ft = 4ft

k = 8/4

k = 2

Thus,we now have;

(d²x/dt²) + (√2/(¼))(dx/dt) + (2/(¼))x = 0

>> (d²x/dt²) + (4√2)dx/dt + 8x = 0

The auxiliary equation of this is;

m² + (4√2)m + 8 = 0

Using quadratic formula, we have;

m1 = m2 = -2√2

The general solution will be gotten from;

x_t = c1•e^(mt) + c2•t•e^(mt)

Plugging in the relevant values gives;

x_t = c1•e^(mt) + c2•t•e^(mt)

At initial condition of t = 0, x_t = 0 and thus; c1 = 0

Also at initial condition of t = 0, x'(0) = 7 and thus;

Since c1 = 0, then c2 = 7

Thus,equation of motion is;

x(t) = 7te^(-2t√2)

8 0
3 years ago
You need to focus a 10 mW, 632.8 nm Gaussian laser beam that is 5.0 mm in diameter into a sample. You have access to a lens with
Anna [14]

Answer:

ee that the lens with the shortest focal length has a smaller object

           

Explanation:

For this exercise we use the constructor equation or Gaussian equation

        \frac{1}{f}  = \frac{1}{p} + \frac{1}{q}

where f is the focal length, p and q are the distance to the object and the image respectively.

Magnification a lens system is

          m = \frac{h'}{h} = - \frac{q}{p}

             h ’= -\frac{h q}{p}

In the exercise give the value of the height of the object h = 0.50cm and the position of the object p =∞

Let's calculate the distance to the image for each lens

f = 6.0 cm

           \frac{1}{q} = \frac{1}{f }  - \frac{1}{p}

as they indicate that the light fills the entire lens, this indicates that the object is at infinity, remember that the light of the laser rays is almost parallel, therefore p = inf

          q = f = 6.0 cm

for the lens of f = 12.0 cm q = 12.0 cn

to find the size of the image we use

           h ’= h q / p

where p has a high value and is the same for all systems

           h ’= h / p q

Thus

f = 6 cm h ’= fo 6 cm

 

f = 12 cm h ’= fo 12  cm

therefore we see that the lens with the shortest focal length has a smaller object

8 0
3 years ago
Other questions:
  • What is the effect of pressure on the volume of a gas?
    6·2 answers
  • Interstellar space is filled with radiation of frequency 160.23 GHz.
    12·1 answer
  • If your mass is 65 kg on earth, what would your mass be on the moon?
    12·1 answer
  • According to the three laws of planetary motion, planetary orbits are in the shape of a/an
    14·1 answer
  • Three science questions help please!
    13·1 answer
  • muscular movement involving the walls of the digestive tract that serve to mix materials and move them along the track
    12·1 answer
  • How do various factors affect climent
    15·2 answers
  • (help please no links )
    5·1 answer
  • Plz help me with this question ​
    12·1 answer
  • A. The potential energy stored in the compressed spring of a dart gun, with a spring constant of 62.00 N/m, is 0.940 J. Find by
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!