Answer:
How much does light bend? When light travels from air into water, it slows down, causing it to change direction slightly. This change of direction is called refraction. When light enters a more dense substance (higher refractive index), it 'bends' more towards the normal line.
Answer: Electrons move around the nucleus in fixed orbits of equal levels of energy
Explanation:
The statement that accurately represents the arrangement of electrons in Bohr’s atomic model is that the electrons move around the nucleus in fixed orbits of equal levels of energy.
It should be noted that the electrons have a fixed energy level when they travel around the nucleus in with energies which varies for different levels.
Higher energy levels are depicted by the orbits that are far from the nucleus. There's emission of light when the electrons then return back to a lower energy level.
Answer:
a) 
For this case we know the following values:




So then if we replace we got:

b) 
With 
And replacing we have:

And then the scattered wavelength is given by:

And the energy of the scattered photon is given by:

c) 
Explanation
Part a
For this case we can use the Compton shift equation given by:
For this case we know the following values:
So then if we replace we got:
Part b
For this cas we can calculate the wavelength of the phton with this formula:
With
And replacing we have:
And then the scattered wavelength is given by:
And the energy of the scattered photon is given by:
Part c
For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:
A) According to the nebular theory, the Solar System formed from a huge gaseous nebula which at a certain point was perturbated. Atoms and molecules started colliding, forming planetesimals (a sort of big rocks). The planetesimals were attracted to each other by gravity, forming bigger warm almost spherical objects called protoplanets, which at the end cooled down forming planets.
Therefore the correct answer is "all of the above".
b) The planets closer to the Sun were (and still are) subject to higher temperatures, due to their close distance to the Sun. In these conditions, rocky materials undergo condensation, while iced gaseous materials undergo vaporization. In the outer parts of the Solar System temperatures are too low to allow these transformations.
The correct answer is again "all of the above".