For the answer to the question above,
we can get the number of fringes by dividing (delta t) by the period of the light (Which is λ/c).
fringe = (delta t) / (λ/c)
We can find (delta t) with the equation:
delta t = [v^2(L1+L2)]/c^3
Derivation of this formula can be found in your physics text book. From here we find (delta t):
600,000^2 x (11+11) / [(3x10^8)^3] = 2.93x10^-13
2.93x10^-13/ (589x10^-9 / 3x10^8) = 149 fringes
This answer is correct but may seem large. That is because of your point of reference with the ether which is usually at rest with respect to the sun, making v = 3km/s.
The last one, the soil will become weak & unable to support plant growth
Answer: 211.059 m
Explanation:
We have the following data:
The angle at which the ball leaves the bat
The initial velocity of the ball
The acceleration due gravity
We need to find how far (horizontally) the ball travels in the air: 
Firstly we need to know this velocity has two components:
<u>Horizontally:</u>
(1)
(2)
<u>Vertically:</u>
(3)
(4)
On the other hand, when we talk about parabolic movement (as in this situation) the ball reaches its maximum height just in the middle of this parabola, when
and the time
is half the time it takes the complete parabolic path.
So, if we use the following equation, we will find
:
(5)
Isolating
:
(6)
(7)
(8)
Now that we have the time it takes to the ball to travel half of is path, we can find the total time
it takes the complete parabolic path, which is twice
:
(9)
With this result in mind, we can finally calculate how far the ball travels in the air:
(10)
Substituting (2) and (9) in (10):
(11)
Finally: