Answer:
8
Step-by-step explanation:
not sure if this is what ur looking for sorry
So it tells us that g(3) = -5 and g'(x) = x^2 + 7.
So g(3) = -5 is the point (3, -5)
Using linear approximation
g(2.99) is the point (2.99, g(3) + g'(3)*(2.99-3))
now we just need to simplify that
(2.99, -5 + (16)*(-.01)) which is (2.99, -5 + -.16) which is (2.99, -5.16)
So g(2.99) = -5.16
Doing the same thing for the other g(3.01)
(3.01, g(3) + g'(3)*(3.01-3))
(3.01, -5 + 16*.01) which is (3.01, -4.84)
So g(3.01) = -4.84
So we have our linear approximation for the two.
If you wanted to, you could check your answer by finding g(x). Since you know g'(x), take the antiderivative and we will get
g(x) = 1/3x^3 + 7x + C
Since we know g(3) = -5, we can use that to solve for C
1/3(3)^3 + 7(3) + C = -5 and we find that C = -35
so that means g(x) = (x^3)/3 + 7x - 35
So just to check our linear approximations use that to find g(2.99) and g(3.01)
g(2.99) = -5.1597
g(3.01) = -4.8397
So as you can see, using the linear approximation we got our answers as
g(2.99) = -5.16
g(3.01) = -4.84
which are both really close to the actual answer. Not a bad method if you ever need to use it.
Hello!
First you have to list the data in both classes
Class A
41, 42, 45, 46, 47, 48, 52, 53, 54, 59, 61, 61, 64, 68, 71, 82, 85, 90
Class B
41, 42, 59, 62, 64, 69, 71, 75, 77, 78, 78, 80, 83, 84, 84, 86, 86, 87, 92, 92, 95
------------------------------------------------------------------------------------------------------
First we are going to find the mode and mean of class A
The mode is the number that appears the most
The number that appears the most is 61
The mode is 61
To find the mean you add all the numbers together and divide the sum by the amount of numbers added
41 + 42 + 45 + 46 + 47 + 48 + 52 + 53 + 54 + 59 + 61 + 61 + 64 + 68 + 71 + 82 + 85 + 90 = 1069
Divide this by the amount of numbers added
1069 / 18 = 59.3888...
The mean is 59.3888
The mode is 61 and the mean is 59.39 for class A
------------------------------------------------------------------------------------------------------
We are going to find the range and median for class B
To find the range you subtract the smallest number from the largest on
The smallest number is 41
The largest number is 95
Subtract these
95 - 41 = 54
The range is 54
To find the median you list the numbers from least to greatest and look for the number in the middle
41, 42, 59, 62, 64, 69, 71, 75, 77, 78, 78, 80, 83, 84, 84, 86, 86, 87, 92, 92, 95
The number in the middle is 78
The range is 54 and the median is 78
------------------------------------------------------------------------------------------------------
Hope this helps!