1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bezimeni [28]
3 years ago
7

Can someone please help me!!!

Mathematics
2 answers:
kati45 [8]3 years ago
6 0

Answer: To get system B, the second equation in system A was replaced by the sum of that equation and the first equation multiplied by 5. The solution to system B will be the same as the solution to system A.

Step-by-step explanation:

egoroff_w [7]3 years ago
5 0
The correct answer is the first one(a): To get the system B,..., the first equation multiplied by 4...

Explanation:

1. Let us first multiple the first equation in System A with 4, we would get:
4(2x - y) = 4 * 3

=> 8x - 4y = 12 --- (A)

Now add the equation (A) and the second equation of System A:

8x  - 4y = 12
3x + 4y = 10
------------------
11x = 22 

Hence,
System B:
2x - y = 3
11x = 22

-i
You might be interested in
Which is the approximate solution for the system of equations x + 5= 10 and 3x + y = 1?
zheka24 [161]

Answer: The approximate solution is (-0.36, 2.08).

Given system of equations : x+5y=10 and 3x+y=1

3 0
2 years ago
Read 2 more answers
Use any of the methods to determine whether the series converges or diverges. Give reasons for your answer.
Aleks [24]

Answer:

It means \sum_{n=1}^\inf} = \frac{7n^2-4n+3}{12+2n^6} also converges.

Step-by-step explanation:

The actual Series is::

\sum_{n=1}^\inf} = \frac{7n^2-4n+3}{12+2n^6}

The method we are going to use is comparison method:

According to comparison method, we have:

\sum_{n=1}^{inf}a_n\ \ \ \ \ \ \ \ \sum_{n=1}^{inf}b_n

If series one converges, the second converges and if second diverges series, one diverges

Now Simplify the given series:

Taking"n^2"common from numerator and "n^6"from denominator.

=\frac{n^2[7-\frac{4}{n}+\frac{3}{n^2}]}{n^6[\frac{12}{n^6}+2]} \\\\=\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{n^4[\frac{12}{n^6}+2]}

\sum_{n=1}^{inf}a_n=\sum_{n=1}^{inf}\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\ \ \ \ \ \ \ \ \sum_{n=1}^{inf}b_n=\sum_{n=1}^{inf} \frac{1}{n^4}

Now:

\sum_{n=1}^{inf}a_n=\sum_{n=1}^{inf}\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\\ \\\lim_{n \to \infty} a_n = \lim_{n \to \infty}  \frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\\=\frac{7-\frac{4}{inf}+\frac{3}{inf}}{\frac{12}{inf}+2}\\\\=\frac{7}{2}

So a_n is finite, so it converges.

Similarly b_n converges according to p-test.

P-test:

General form:

\sum_{n=1}^{inf}\frac{1}{n^p}

if p>1 then series converges. In oue case we have:

\sum_{n=1}^{inf}b_n=\frac{1}{n^4}

p=4 >1, so b_n also converges.

According to comparison test if both series converges, the final series also converges.

It means \sum_{n=1}^\inf} = \frac{7n^2-4n+3}{12+2n^6} also converges.

5 0
3 years ago
24+82 rounding or compatible numbers to estimate the sum
allsm [11]

Answer:

106

Step-by-step explanation:

you take 82 and 24 and add them together so it would be like this 2 + 4 = 6 and 8 + 2 = 10 so the 8 is in a tens place so the answer from adding 8 + 2 = 100 because you in the tens place so the final answer would be 106 after adding it all up.

4 0
2 years ago
Reliance on solid biomass fuel for cooking and heating exposes many children from developing countries to high levels of indoor
castortr0y [4]

Answer:

A) 95% confidence interval for the population mean PEF for children in biomass households = (3.214, 3.386)

95% confidence interval for the population mean PEF for children in LPG households

= (4.125, 4.375)

Simultaneous confidence interval for both = (3.214, 4.375)

B) The result of the hypothesis test is significant, hence, the true average PEF is lower for children in biomass households than it is for children in LPG households.

C) 95% confidence interval for the population mean FEY for children in biomass households = (2.264, 2.336)

Simultaneous confidence interval for both = (2.264, 4.375)

This simultaneous interval cannot be the same as that calculated in (a) above because the sample mean obtained for children in biomass households here (using FEY) is much lower than that obtained using PEF in (a).

Step-by-step explanation:

A) Confidence Interval for the population mean is basically an interval of range of values where the true population mean can be found with a certain level of confidence.

Mathematically,

Confidence Interval = (Sample mean) ± (Margin of error)

Margin of Error is the width of the confidence interval about the mean.

It is given mathematically as,

Margin of Error = (Critical value) × (standard Error of the mean)

Critical value will be obtained using the z-distribution. This is because although, there is no information provided for the population standard deviation, the sample sizes are large enough for the sample properties to approximate the population properties.

Finding the critical value from the z-tables,

Significance level for 95% confidence interval

= (100% - 95%)/2 = 2.5% = 0.025

z (0.025) = 1.960 (from the z-tables)

For the children in the biomass households

Sample mean = 3.30

Standard error of the mean = σₓ = (σ/√N)

σ = standard deviation of the sample = 1.20

N = sample size = 755

σₓ = (1.20/√755) = 0.0436724715 = 0.04367

95% Confidence Interval = (Sample mean) ± [(Critical value) × (standard Error of the mean)]

CI = 3.30 ± (1.960 × 0.04367)

CI = 3.30 ± 0.085598

95% CI = (3.214402, 3.385598)

95% Confidence interval = (3.214, 3.386)

For the children in the LPG households

Sample mean = 4.25

Standard error of the mean = σₓ = (σ/√N)

σ = standard deviation of the sample = 1.75

N = sample size = 750

σₓ = (1.75/√750) = 0.063900965 = 0.063901

95% Confidence Interval = (Sample mean) ± [(Critical value) × (standard Error of the mean)]

CI = 4.25 ± (1.960 × 0.063901)

CI = 4.25 ± 0.125246

95% CI = (4.12475404, 4.37524596)

95% Confidence interval = (4.125, 4.375)

Simultaneous confidence interval for both = (3.214, 4.375)

B) The null hypothesis usually goes against the claim we are trying to test and would be that the true average PEF for children in biomass households is not lower than that of children in LPG households.

The alternative hypothesis confirms the claim we are testing and is that the true average PEF is lower for children in biomass households than it is for children in LPG households.

Mathematically, if the true average PEF for children in biomass households is μ₁, the true average PEF for children in LPG households is μ₂ and the difference is μ = μ₁ - μ₂

The null hypothesis is

H₀: μ ≥ 0 or μ₁ ≥ μ₂

The alternative hypothesis is

Hₐ: μ < 0 or μ₁ < μ₂

Test statistic for 2 sample mean data is given as

Test statistic = (μ₂ - μ₁)/σ

σ = √[(s₂²/n₂) + (s₁²/n₁)]

μ₁ = 3.30

n₁ = 755

s₁ = 1.20

μ₂ = 4.25

n₂ = 750

s₂ = 1.75

σ = √[(1.20²/755) + (1.75²/750)] = 0.07740

z = (3.30 - 4.25) ÷ 0.07740 = -12.27

checking the tables for the p-value of this z-statistic

Significance level = 0.01

The hypothesis test uses a one-tailed condition because we're testing in only one direction.

p-value (for z = -12.27, at 0.01 significance level, with a one tailed condition) = < 0.000000001

The interpretation of p-values is that

When the p-value > significance level, we fail to reject the null hypothesis and when the p-value < significance level, we reject the null hypothesis and accept the alternative hypothesis.

Significance level = 0.01

p-value = 0.000000001

0.000000001 < 0.01

Hence,

p-value < significance level

This means that we reject the null hypothesis, accept the alternative hypothesis & say that true average PEF is lower for children in biomass households than it is for children in LPG households.

C) For FEY for biomass households,

Sample mean = 2.3 L/s

Standard error of the mean = σₓ = (σ/√N)

σ = standard deviation = 0.5

N = sample size = 755

σₓ = (0.5/√755) = 0.0182

95% Confidence Interval = (Sample mean) ± [(Critical value) × (standard Error of the mean)]

CI = 2.30 ± (1.960 × 0.0182)

CI = 2.30 ± 0.03567

95% CI = (2.264, 2.336)

Simultaneous confidence interval for both = (2.264, 4.375)

This simultaneous interval cannot be the same as that calculated in (a) above because the sample mean obtained for children in biomass households here (using FEY) is much lower than that obtained using PEF in (a).

Hope this Helps!!!

6 0
2 years ago
Given that the student is a female what is the probability that she consider's herself to be a "Liberal" ? Round your answer to
il63 [147K]

The answer is D.

0.355


https://quizlet.com/171253209/probability-quiz-amdm-flash-cards/

3 0
3 years ago
Read 2 more answers
Other questions:
  • A circular plate has circumference 17 inches. What is the area of this​ plate?
    12·1 answer
  • What's the answers to this? I'm not sure if I am correct. HELPPPPPPP
    7·2 answers
  • aquil had $40. he spent 2/5 of his money on a new hat. he spent 1/2 of what was left on sunglasses. how much money did he have l
    13·2 answers
  • A group of randomly selected Clyde Marketing employees were asked what their most common form of transportation is. The bar grap
    15·2 answers
  • Which expressions are equivalent to 5p+3p+(-9)5p+3p+(−9)5, p, plus, 3, p, plus, (, minus, 9, )? Choose all answers that apply:
    10·2 answers
  • Help stat brainlist Please and thank you
    8·2 answers
  • Plsss help with this question pls with whole procedure pls help ​
    12·1 answer
  • Two primes that add to 24
    9·2 answers
  • David requires at least $300 to hold his birthday party. If David can save $63 a month, how many months will he need to save to
    5·1 answer
  • What is the least common denominator of 1/8 5/12 + 718<br>A) 216<br>B) 108<br>C) 72<br>D) 48​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!