1. The branches of the bronchial tree ultimately ends at the alveoli.
Bronchial tree consist of bronchi, bronchioles, and alveoli. Bronchi are formed as the lower part of the trachea divides into two tubes. Bronchioles are smaller tube divisions of the bronchi. It walls contain smooth muscle and no cartilage. Alveoli are tiny ends of the alveolar ducts, which functions as the site for gaseous exchange.
2. Blood flows from the left atrium; mitral (bicuspid valves), the left ventricle, aortic valve, aorta, veins and heart, right side of the heart, superior and inferior vena cavae, right atrium, tricuspid valve, right ventricle, pulmonary valve, pulmonary trunk, pulmonary artery, lungs, pulmonary veins, then back to the heart...
3. Arteries and the veins differ in structures and they way they functions; Arteries carry oxygenated blood away from the heart to the body (except pulmonary artery) while veins carry deoxygenated blood back from the body to the heart (except pulmonary veins). A structural differences includes; the veins contain valves while arteries lack. Arteries have narrow lumen while veins have wide lumen. Lastly, blood carried by veins has higher pressure compared to blood carried in vessels.
4. The circulatory and respiratory systems work together to circulate blood and oxygen throughout the body. Air moves in and out of the lungs through the trachea, bronchi, and the bronchioles. Blood moves in and out of the lungs throgh the pulmonary arteries and veins that connect to the heart.
5. The cartilage rings of the trachea
They are strong but flexible tissues which support the trachea or the windpipe while still allowing it to move and flex during breathing. Additionally these cartilage rings are C-shaped to provide room for the esophagus, which lies along the back side of the trachea.
6. Functions of the larynx includes;
To protect the airway from choking on material in the throat
to regulate the flow of air into our lungs
The production of sounds used for speech
Larynx is part of the respiratory system and is located between the pharynx and the trachea. Humans use larynx to breathe, talk and swallow.
7. Structures that make up the pathway of air through the respiratory system starting with the external nares; We start with; External nares, nasal cavity, internal nares, nasopharynx, laryngopharynx,oropharynx, larynx, trachea, primary bronchus, secondary bronchus, tertiary bronchus, bronchiole, terminal bronchiole, respiratory bronchiole, alveolar duct, alveolar sac and alveolus.
Answer:
Carbon moves through Earth's ecosystems in a cycle referred to as the It is through carbon dioxide gas found in Earth's atmosphere that carbon enters the living parts of an ecosystem. ... To release the energy in food, organisms break down the carbon compounds—a process called respiration.
Photosynthesis removes carbon dioxide naturally—and trees are especially good at storing carbon removed from the atmosphere by photosynthesis. Expanding forests, restoring existing forests and managing forests to encourage more carbon uptake can leverage the power of photosynthesis to convert carbon dioxide in the air into carbon stored in wood and soils. The decompsition of the soil helps create a natural environment which keeps the trees healthy and continuously producing photosynthesis. Direct air capture is the process of chemically scrubbing combustionable carbon dioxide directly from the ambient air, and then storing it either underground or in long-lived products. This new technology is not unlike the carbon capture and storage technology for various emissions sources like power plants and industrial facilities. The difference is that direct air capture removes carbon from the atmosphere instead of consuming emissions.
Carbon dioxide is added to the atmosphere by human activities. When hydrocarbon fuels (i.e. wood, coal, natural gas, gasoline, and oil) are burned, carbon dioxide is released. During combustion or burning, carbon from fossil fuels combine with oxygen in the air to form carbon dioxide. Animals and plants need to get rid of carbon dioxide gas through a process called respiration.
Greenhouse gases have far-ranging environmental and health effects. They cause climate change by trapping heat, and they also contribute to respiratory disease from smog and air pollution. Extreme weather, food supply disruptions, and increased wildfires are other effects of climate change caused by greenhouse gases.If not for the greenhouse effect, Earth would be an ice ball. So, CO2 and other greenhouse gases are good—up to a point. But CO2 is so good at holding in heat from the Sun, that even a small increase in CO2 in the atmosphere can cause Earth to get even warmer.
Hope this helps :)
Explanation:
The earth is divided into four main layers: the solid crust on the outside, the mantel, the outer core and the inner core. out of them, the crust is the thinnest layer of the earth, amounting for less than 1% of our planet's volume. hope this helps!
Answer:
the questionnaire is incomplete, the graph with the options is attached
Explanation:
1.
Glucagon increases:
Adenyl ciclase
Proteinquinase A
Fructose 2,6 biphosfatase
3’5’ cyclic AMP
Phosphorylase b kynase
Glycogen syntetase kinase
Glucagon decreases
Phosphofructokinase 2
Fructose -2,6- biphosphate
2.
Glucagon stimulation decreases followay phatway enzimes
Phosphofructokinase 1
Piruvate kinase
Glycogen syntetase
3. Glucagon stimulates following phathways
Decreases glucolysis
Increases gluconeogenesis
Increases glycogenolysis