Answer:
After solving the power:
![\bold{2(cos60^\circ+isin60^\circ)}](https://tex.z-dn.net/?f=%5Cbold%7B2%28cos60%5E%5Ccirc%2Bisin60%5E%5Ccirc%29%7D)
Rectangular form:
![\bold{1+i\sqrt3}](https://tex.z-dn.net/?f=%5Cbold%7B1%2Bi%5Csqrt3%7D)
Step-by-step explanation:
Given the complex number:
![2(cos20^\circ+isin20^\circ)^3](https://tex.z-dn.net/?f=2%28cos20%5E%5Ccirc%2Bisin20%5E%5Ccirc%29%5E3)
To find:
The indicated power by using De Moivre's theorem.
The complex number in rectangular form.
Rectangular form of a complex number is given as
where a and b are real numbers.
Solution:
First of all, let us have a look at the De Moivre's theorem:
![(cos\theta+isin\theta )^n=cos(n\theta)+isin(n\theta )](https://tex.z-dn.net/?f=%28cos%5Ctheta%2Bisin%5Ctheta%20%29%5En%3Dcos%28n%5Ctheta%29%2Bisin%28n%5Ctheta%20%29)
First of all, let us solve:
Let us apply the De Moivre's Theorem:
Here, n = 3
Now, the given complex number becomes:
![2(cos60^\circ+isin60^\circ)](https://tex.z-dn.net/?f=2%28cos60%5E%5Ccirc%2Bisin60%5E%5Ccirc%29)
Let us put the values of
and ![sin60^\circ = \frac{\sqrt3}{2}](https://tex.z-dn.net/?f=sin60%5E%5Ccirc%20%3D%20%5Cfrac%7B%5Csqrt3%7D%7B2%7D)
![2(\dfrac{1}{2}+i\dfrac{\sqrt3}2)\\\Rightarrow (2 \times \dfrac{1}{2}+i\dfrac{\sqrt3}2\times 2)\\\Rightarrow \bold{1 +i\sqrt3 }](https://tex.z-dn.net/?f=2%28%5Cdfrac%7B1%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt3%7D2%29%5C%5C%5CRightarrow%20%282%20%5Ctimes%20%5Cdfrac%7B1%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt3%7D2%5Ctimes%202%29%5C%5C%5CRightarrow%20%5Cbold%7B1%20%2Bi%5Csqrt3%20%7D)
So, the rectangular form of the given complex number is:
![\bold{1+i\sqrt3}](https://tex.z-dn.net/?f=%5Cbold%7B1%2Bi%5Csqrt3%7D)