Answer C (-8,0)
because the line crosses the x-intercept (the horizontal line)
The Correct option is 36.60
Step-by-step explanation:
The key to solving this question lies
around measurement
conversion,specifically converting
grams into its equivalence in
kilograms.
1000 grams equal one kilogram
9 grams=9/1000 kg
9 grams=0.009 kg
70 grams=70/1000 kg 1000 grams equal one kilogram
9 grams=9/1000 kg
9 grams=0.009 kg
70 grams=70/1000 kg
70 grams=0.07 kg
Julie pays=$600*0.009=$5.4
Jacques pays=$600*0.07=$42
Jacques pays $36.60 more ($42-
$5.4) than Julie paid
Option is wrong because that was Jacques pays=$600*0.07=$42
Jacques pays $36.60 more ($42-
$5.4) than Julie paid
Option is wrong because that was
what Julie paid
Option D is wrong because that was
what Jacques paid
Option B is obviously wrong
Answer:
2022
Step-by-step explanation:
2 + 4x = y
y = 2 + 4(505)
y = 2 + 2020
y = 2022
Recall that to get the x-intercepts, we set the f(x) = y = 0, thus
![\bf \stackrel{f(x)}{0}=-4cos\left(x-\frac{\pi }{2} \right)\implies 0=cos\left(x-\frac{\pi }{2} \right) \\\\\\ cos^{-1}(0)=cos^{-1}\left[ cos\left(x-\frac{\pi }{2} \right) \right]\implies cos^{-1}(0)=x-\cfrac{\pi }{2} \\\\\\ x-\cfrac{\pi }{2}= \begin{cases} \frac{\pi }{2}\\\\ \frac{3\pi }{2} \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bf%28x%29%7D%7B0%7D%3D-4cos%5Cleft%28x-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5Cright%29%5Cimplies%200%3Dcos%5Cleft%28x-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5Cright%29%0A%5C%5C%5C%5C%5C%5C%0Acos%5E%7B-1%7D%280%29%3Dcos%5E%7B-1%7D%5Cleft%5B%20cos%5Cleft%28x-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5Cright%29%20%5Cright%5D%5Cimplies%20cos%5E%7B-1%7D%280%29%3Dx-%5Ccfrac%7B%5Cpi%20%7D%7B2%7D%0A%5C%5C%5C%5C%5C%5C%0Ax-%5Ccfrac%7B%5Cpi%20%7D%7B2%7D%3D%0A%5Cbegin%7Bcases%7D%0A%5Cfrac%7B%5Cpi%20%7D%7B2%7D%5C%5C%5C%5C%0A%5Cfrac%7B3%5Cpi%20%7D%7B2%7D%0A%5Cend%7Bcases%7D)
Answer:
Option A
The p-value is less than the significance level of 0.05 chosen and so we reject the null hypothesis H0 and can conclude that the proportion of the subjects who have the necessary qualities is less than 0.2.
Step-by-step explanation:
Normally, in hypothesis testing, the level of statistical significance is often expressed as the so-called p-value. We use p-values to make conclusions in significance testing. More specifically, we compare the p-value to a significance level "α" to make conclusions about our hypotheses.
If the p-value is lower than the significance level we chose, then we reject the null hypotheses H0 in favor of the alternative hypothesis Ha. However, if the p-value is greater than or equal to the significance level, then we fail to reject the null hypothesis H0
though this doesn't mean we accept H0 automatically.
Now, applying this to our question;
The p-value is 0.023 while the significance level is 0.05.
Thus,p-value is less than the significance level of 0.05 chosen and so we reject the null hypothesis H0 and can conclude that the proportion of the subjects who have the necessary qualities is less than 0.2.
The only option that is correct is option A.