1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sammy [17]
3 years ago
9

The reaction 2NO(g)+O2(g)−→−2NO2(g) is second order in NO and first order in O2. When [NO]=0.040M, and [O2]=0.035M, the observed

rate of disappearance of NO is 9.3×10−5M/s.
(a) What is the rate of disappearance of O2 at this moment?
(b) What is the value of the rate constant?
(c) What are the units of the rate constant?
(d) What would happen to the rate if the concentration of NO were increased by a factor of 1.8?
Chemistry
1 answer:
Oksanka [162]3 years ago
5 0

Answer:

(a) The rate of disappearance of O_{2} is: 4.65*10^{-5} M/s

(b) The value of rate constant is: 0.83036 M^{-2}s^{-1}

(c) The units of rate constant is:  M^{-2}s^{-1}

(d) The rate will increase by a factor of 3.24

Explanation:

The rate of a reaction can be expressed in terms of the concentrations of the reactants and products in accordance with the balanced equation.

For the given reaction:

2NO(g)+O_{2}->2NO_{2}

rate = -\frac{1}{2} \frac{d}{dt}[NO] = -\frac{d}{dt}[O_{2}] = \frac{1}{2}\frac{d}{dt}[NO_{2}] -----(1)

According to the question, the reaction is second order in NO and first order in  O_{2}.

Then we can say that, rate = k[NO]^{2}[O_{2}] -----(2)

where k is the rate constant.

The rate of disappearance of NO is given:

-\frac{d}{dt}[NO] = 9.3*10^{-5} M/s.

(a) From (1), we can get the rate of disappearance of O_{2}.

    Rate of disappearance of  O_{2} = -\frac{d}{dt}[O_{2}] = (0.5)*(9.3*10^{-5}) M/s = 4.65*10^{-5} M/s.

(b) The rate of the reaction can be obtained from (1).

    rate = -\frac{1}{2} \frac{d}{dt}[NO] = (0.5)*(9.3*10^{-5})

    rate = 4.65*10^{-5} M/s

   The value of rate constant can be obtained by using (2).

    rate constant = k = \frac{rate}{[NO]^{2}[O_{2}]}

    k = \frac{4.65*10^{-5}}{(0.040)^{2}(0.035)} = 0.83036 M^{-2}s^{-1}

(c) The units of the rate constant can be obtained from (2).

    k = \frac{rate}{[NO]^{2}[O_{2}]}

    Substituting the units of rate as M/s and concentrations as M, we get:

\frac{Ms^{-1} }{M^{3}} = M^{-2}s^{-1}

(d) The reaction is second order in NO. Rate is proportional to square of the concentration of NO.

     rate\alpha [NO]^{2}

If the concentration of NO increases by a factor of 1.8, the rate will increase by a factor of (1.8)^{2} = 3.24

     

You might be interested in
Indicate whether the following represents a Chemical or Physical change: Milk sours
marusya05 [52]

Answer:

Chemical Change

Explanation:

Physical change normally mean that the change can revert back to its orginal state, which in this case that is not possible therfore it is a chemical change.

4 0
3 years ago
What happens when buoyant mantle material gets near earths surface
krek1111 [17]
It will form mountains, hope this helps
3 0
3 years ago
Read 2 more answers
How does scientific method help scientists
Irina18 [472]

Scientists use the scientific method all the time to help them understand things about certain topics. The scientific method is a list of steps that are used before, during, and after the experiment. The scientific method can help prove hypothesis about things and can tell you the outcome of the experiment.

6 0
3 years ago
How much copper is in 4.64 grams of copper
Romashka [77]

Answer:

4.64 grams.

Explanation:

without stating a desired unit, stating the answer in any unit is acceptable. So you can use grams and the problem is done for you

6 0
3 years ago
A sample of neon has a volume of 40.81 m3 at 23.5C. At what temperature, in Kelvins, would the gas occupy 50.00 cubic meters? As
mezya [45]

At  \fbox{\begin \\363 K \end{minispace}}  temperature, a sample of neon gas will occupy 50.00 \text{ m}^{3} volume.

Further Explanation:

The given problem is based on the concept of Charles’ law. Charles’ law states that “at constant pressure and fixed mass the volume occupied an ideal gas is directly proportional to the Kelvin temperature.”

Mathematically the law can be expressed as,

\fbox{ \begin \\ V \propto T \end{minispace}}

Or,

\frac{V}{T}=k

Here, <em>V</em> is the volume of the gas, <em>T</em> is Kelvin temperature, and <em>k</em> is proportionality constant.

Given information:

The initial volume of neon gas is 40.81 \text{ m}^{3} .

The final volume of neon gas is  50.00 \text{ m}^{3}.

The initial temperature value is 23.5 \text{ } ^{\circ} \text{C} .

To calculate:

The final temperature

Given Condition:

  • The pressure is constant.
  • Mass of gas is fixed.

Solution:

Step 1: Modify the mathematical expression for Charles’ law for two different temperature and volume values as follows:

\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}

Here,

  • V_{1}is the initial volume of the gas.
  • V_{2} is the final volume of the gas.
  • T_{1} is the initial temperature of the gas.
  • T_{2} is the final temperature of the gas.

Step 2: Rearrange equation (2) for .

\fbox {\begin \\T_{2}=\frac{(V_{2}) \times (T_{1})}{V_{1}}\\\end{minispace}}                                                                  …… (2)

Step 3: Convert the given temperature  from degree Celsius to Kelvin.

The conversion factor to convert degree Celsius to Kelvin is,

T(\text{K}) = T(^{\circ}\text{C}) + 273.15                                      …… (3)

Substitute 23.5\text{ }^{\circ} \text{C} for T(^{\circ}\text{C})  in equation (3) to convert temperature from degree Celsius to Kelvin.

T(\text{K}) = 23.5 \text{ } ^{\circ} \text{C} + 273.15\\T(\text{K})= 296.65 \text{ K}

Step 4: Substitute 40.81 \text{ m}^{3}  for V_{1} ,  50.00 \text{ m}^{3} for V_{2}  and  296.65 \text{ K} for T_{1}  in equation (2) and calculate the value of T_{2} .

T_{2}=\frac{(50.00 \text{ m}^{3}) \times (296.65 \text{ K})}{40.81 \text{ m}^{3}}\\T_{2}=363.45 \text{ K}\\T_{2} \approx 363 \text{ K}

Important note:

  • The temperature must be in Kelvin.
  • The condition of fixed mass and fixed pressure must be fulfilled in order to apply Charles’ law.

Learn More:

1. Gas laws brainly.com/question/1403211

2. Application of Charles’ law brainly.com/question/7434588

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: States of matter

Keywords: neon, volume, occupies, temperature, Kelvin, degree Celsius, Charle’s law, constant pressure, fixed mass, 40.81 m^3 , 50.00 m^3 , 23.5 degree C , celsius , 363 K , sates of matter, initial volume, final volume, initial temperature, final temperature, V1 , V2 , T1 , T2 .

5 0
3 years ago
Read 2 more answers
Other questions:
  • Write the balanced half-equation describing the oxidation of mercury to hgo in a basic aqueous solution. Please include the stat
    12·1 answer
  • A certain liquid has a density of 2.67 g/cm3. 30.5 ml of this liquid would have a mass of __________ kg.
    11·1 answer
  • Given the chemical formula, how is this substance MOST LIKELY classified? A) atom B) compound C) both atom and compound D) neith
    7·1 answer
  • If you examined the human body on a chemical composition basis, which of the following combinations of elements would be most co
    9·1 answer
  • Consider the densities of copper (8.96) and sulfur (2.07) , explain why 2 grams of copper takes up much less space than only 1 g
    13·1 answer
  • How do the particles of a gas differ from the particles of a solid?
    13·1 answer
  • The dorsal side of the leopard frog
    6·1 answer
  • How much energy is required to vaporize 2 kg of gold? Use the table below
    6·1 answer
  • Calculate mL (4 sf) of 0.7500 M sodium hydroxide required to neutralize 35.00 mL of 0.7500 M phosphoric acid. Please input numbe
    13·1 answer
  • Select the correct answer from each drop-down menu.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!