C2H4 is oxidized and O2 is reduced in both reactions.
<h3>What is oxidation/reduction?</h3>
Oxidation is defined in several ways. Some of the definitions are:
- The addition of oxygen or removal of hydrogen
- Increase in the oxidation number of atoms
- Addition of electronegative or the removal of electropositive elements
Reduction, on the other hand, is defined as:
- Removal of oxygen or addition of hydrogen
- Decrease in the oxidation number of atoms
- Addition of electropositive elements or the removal of electronegative elements.
In the two reactions, oxygen is being added to C2H4. Thus, C2H4 is being oxidized.
The oxidizing agent is O2. In oxidation reactions, the oxidizing agents usually get reduced. Thus, O2 is reduced in both reactions.
More on oxidation and reduction can be found here: brainly.com/question/3867774
#SPJ1
1. A heavy nucleus (U235 or Pu239), when bombarded by slow moving neutrons, split into two
or more nuclei.
2. Two or more neutrons are produced by fission of each nucleus.
3. Huge amount of energy is produced as a result of nuclear fission.
4. All the fission fragments are radioactive, giving off β and radiations.
<span>5. The atomic weights of fission products range from about </span>70 to 160.
6. The nuclear chain reactions can be controlled and maintained steadily by absorbing a
desired number of neutrons. This process is used in nuclear reactor.
<span>7. All the fission reactions are self-propagating chain-reactions because fission products contain </span>
neutrons (secondary neutrons) which further cause fission in other nuclei.
8. Every secondary neutron, released in the fission process, does not strike a nucleus, some
escape into air and hence a chain reaction cannot be maintained.
<span>9. The number of neutrons, resulting from a single fission, is known as the multiplication factor. </span>
When the multiplication factor is less than 1, a chain reaction does not take place.
<span>10. The control of chain reaction is necessary in order to maintain a steady reaction. This is </span>
carried out by absorbing a desired number of neutron by employing materials like
percentage of Cd, B or steel.
11. In a nuclear reactor, the multifactor is one. This is achieved by proper arrangement of
<span>fissionable materials.</span>
Answer:
Mass = 112 g
Explanation:
Given data:
Mass of CO₂ produced = 90.6 g
Mass of oxygen needed = ?
Solution:
Chemical equation:
C₃H₈ + 5O₂ → 3CO₂+ 4H₂O
Number of moles of CO₂:
Number of moles = 90.6 g/ 44 g/mol
Number of moles = 2.1 mol
Now we will compare the moles of CO₂ and oxygen:
CO₂ : O₂
3 : 5
2.1 : 5/3×2.1 = 3.5
Mass of oxygen needed:
Mass = number of moles × molar mass
Mass = 3.5 mol × 32 g/mol
Mass = 112 g
Substitution Reactions are those reactions in which one nucleophile replaces another nucleophile present on a substrate. These reactions can take place via two different mechanism i.e SN¹ or SN². In SN¹ substitution reactions the leaving group leaves first forming a carbocation and nucleophile attacks carbocation in the second step. While in SN² reactions the addition of Nucleophile and leaving of leaving group take place simultaneously.
Example:
OH⁻ + CH₃-Br → CH₃-OH + Br⁻
In above reaction,
OH⁻ = Incoming Nucleophile
CH₃-Br = Substrate
CH₃-OH = Product
Br⁻ = Leaving group
Organic reactions are typically slower than ionic reactions because in organic compounds the covalent bonds are first broken, this breaking of bonds is a slower step, while, in ionic compounds no bond breakage is required as it consists of ions, so only bond formation takes place which is a quicker and fast step.