Since U is a universal set where S is its subset, then set U should consist of all the letters, numbers and punctuation mark in a keyboard. In other words, universal set U consists of the following elements:
U = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
U = (x| x comprised of all the letters in the alphabet fro a to z)
U = (!,.,,,?,!:,;,",',-)
Function 1:
f(x) = -x² + 8(x-15)f(x) = -x² <span>+ 8x - 120
Function 2:
</span>f(x) = -x² + 4x+1
Taking derivative will find the highest point of the parabola, since the slope of the parabola at its maximum is 0, and the derivative will allow us to find that.
Function 1 derivative: -2x + 8 ⇒ -2x + 8 = 0 ⇒ - 2x = -8 ⇒ x = -8/-2 = 4
Function 2 derivative: -2x+4 ⇒ -2x + 4 = 0 ⇒ -2x = -4 ⇒ x = -4/-2 ⇒ x= 2
Function 1: f(x) = -x² <span>+ 8x - 120 ; x = 4
f(4) = -4</span>² + 8(4) - 120 = 16 + 32 - 120 = -72
<span>
Function 2: </span>f(x) = -x²<span> + 4x+1 ; x = 2
</span>f(2) = -2² + 4(2) + 1 = 4 + 8 + 1 = 13
Function 2 has the larger maximum.
Answer:77
Step-by-step explanation:
Least Common Multiple of 7 and 11 with GCF Formula
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 7 and 11, than apply into the LCM equation.
GCF(7,11) = 1
LCM(7,11) = ( 7 × 11) / 1
LCM(7,11) = 77 / 1
LCM(7,11) = 77
Least Common Multiple (LCM) of 7 and 11 with Primes
Least common multiple can be found by multiplying the highest exponent prime factors of 7 and 11. First we will calculate the prime factors of 7 and 11.
Prime Factorization of 7
Prime factors of 7 are 7. Prime factorization of 7 in exponential form is:
7 = 71
Prime Factorization of 11
Prime factors of 11 are 11. Prime factorization of 11 in exponential form is:
11 = 111
Now multiplying the highest exponent prime factors to calculate the LCM of 7 and 11.
LCM(7,11) = 71 × 111
LCM(7,11) = 77
Answer:
12 miles al least
Step-by-step explanation: there you answer is