Answer:
9.7 g
Explanation:
Hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii :)
Answer:
308 moles of sodium
Explanation:
The balanced equation for the chemical reaction between sodium metal (Na) and water (H₂O) is the following:
2 Na(s) + 2 H₂O → 2 NaOH(aq) + H₂(g)
From the equation, we can see that 2 moles of Na react with 2 moles of H₂O to give 2 moles of NaOH and 1 mol of H₂ (hydrogen gas). So the stoichiometric mole ratio between Na and H₂ is: 2 mol Na/1 mol H₂. Thus, we multiply the mole ratio by the moles of H₂ to be produced to obtain the moles of Na required:
moles of Na required = 2 mol Na/1 mol H₂ x 154 moles H₂ = 308 moles Na
Therefore, 308 moles of sodium are needed to produce 154 moles of hydrogen gas.
I would assume it would be impossible or unlikely
Answer:
Henry's law constant for a gas ch3br
28 The Henry's Law constant of methyl bromide, CH3Br, is k = 0.159 mol/(L⋅atm) at 25°C.
Explanation:
Answer:
D. 450 J/kgK
Explanation:
Using the formula as follows:
Q = m × c × ∆T
Where:
Q = amount of heat absorbed/released (J)
m = mass of substance (g)
c = specific heat capacity
∆T = change in temperature (°C)
According to the information provided in this question:
Q = 267.3 kJ = 267300J
m = 18kg
∆T = 318K - 285K = 33K
c = ?
Q = m × c × ∆T
c = Q ÷ m∆T
c = 267300 ÷ 18 × 33
c = 267300 ÷ 594
c = 450 J/kgK