Answer:
Change in electric potential energy ∆E = 365.72 kJ
Explanation:
Electric potential energy can be defined mathematically as:
E = kq1q2/r ....1
k = coulomb's constant = 9.0×10^9 N m^2/C^2
q1 = charge 1 = -2.1C
q2 = charge 2 = -5.0C
∆r = change in distance between the charges
r1 = 420km = 420000m
r2 = 160km = 160000m
From equation 1
∆E = kq1q2 (1/r2 -1/r1) ......2
Substituting the given values
∆E = 9.0×10^9 × -2.1 ×-5.0(1/160000 - 1/420000)
∆E = 94.5 × 10^9 (3.87 × 10^-6) J
∆E = 365.72 × 10^3 J
∆E = 365.72 kJ
Explanation:
The first ionization energy varies in a predictable way across the periodic table. The ionization energy decreases from top to bottom in groups, and increases from left to right across a period. Thus, helium has the largest first ionization energy, while francium has one of the lowest.
Answer:
1. Information Gathering
2. Analysis and Planning.
3. Implementation of a solution.
4. Assessment of the effectiveness of the solution.
5. Documentation of the incident.
Explanation:
It is given that a particle covers 10m in first 5s and 10m in next 3s. so using the equation of motion
Case I
s=ut+
2
1
at
2
10=5u+
2
1
a(5)
2
20=10u+25a
4=2u+5a..............(1)
Case 2
In next 3s the particle covers more 10m distance. So
20=8u+
2
1
a(8)
2
5=2u+8a.........(2)
On solving equation (1) and (2)
4=2u+5a
5=2u+8a
a=
3
1
m/s
2
Put the value of a in equation (1)
u=
6
7
m/s
Now to find distance in next 10 s. total time will be 10s
s=
6
7
×10+
2
1
×
3
1
×(10)
2
s=28.33m
Distance travelled in next 2 sec
s=28.33−20=8.33m
Answer:
0.56 km/s
Explanation:
We will define a single system of units for measurement, for this case meters per second [m/s]. That is, we must convert the rest of units such as centimeters per second and kilometers per second to meters per second.
![560[\frac{cm}{s}]*(\frac{1m}{100cm} )=5.6[m/s]\\0.56[\frac{km}{s}]*(\frac{1000m}{1km} )=560[m/s]](https://tex.z-dn.net/?f=560%5B%5Cfrac%7Bcm%7D%7Bs%7D%5D%2A%28%5Cfrac%7B1m%7D%7B100cm%7D%20%29%3D5.6%5Bm%2Fs%5D%5C%5C0.56%5B%5Cfrac%7Bkm%7D%7Bs%7D%5D%2A%28%5Cfrac%7B1000m%7D%7B1km%7D%20%29%3D560%5Bm%2Fs%5D)
Therefore the speed of 0.56 [km/s] is the greatest of all