1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vilka [71]
3 years ago
8

Physical science

Physics
1 answer:
attashe74 [19]3 years ago
3 0

Answer:

0.56 km/s

Explanation:

We will define a single system of units for measurement, for this case meters per second [m/s]. That is, we must convert the rest of units such as centimeters per second and kilometers per second to meters per second.

560[\frac{cm}{s}]*(\frac{1m}{100cm} )=5.6[m/s]\\0.56[\frac{km}{s}]*(\frac{1000m}{1km} )=560[m/s]

Therefore the speed of 0.56 [km/s] is the greatest of all

You might be interested in
Why do we get dizzy when we spin?
iris [78.8K]
The body senses whether it is upright or lying down or whether it is moving or standing still through the vestibular system, which is in the upper portion of the inner ear.
3 0
3 years ago
Several springs are connected as illustrated below in (a). Knowing the individual springs stiffness k1 = 20 N/m, k2 = 30 N/m, k3
Hatshy [7]

Answer:

The equivalent stiffness of the string is 8.93 N/m.

Explanation:

Given that,

Spring stiffness is

k_{1}=20\ N/m

k_{2}=30\ N/m

k_{3}=15\ N/m

k_{4}=20\ N/m

k_{5}=35\ N/m

According to figure,

k_{2} and k_{3} is in series

We need to calculate the equivalent

Using formula for series

\dfrac{1}{k}=\dfrac{1}{k_{2}}+\dfrac{1}{k_{3}}

k=\dfrac{k_{2}k_{3}}{k_{2}+k_{3}}

Put the value into the formula

k=\dfrac{30\times15}{30+15}

k=10\ N/m

k and k_{4} is in parallel

We need to calculate the k'

Using formula for parallel

k'=k+k_{4}

Put the value into the formula

k'=10+20

k'=30\ N/m

k_{1},k' and k_{5} is in series

We need to calculate the equivalent stiffness of the spring

Using formula for series

k_{eq}=\dfrac{1}{k_{1}}+\dfrac{1}{k'}+\dfrac{1}{k_{5}}

Put the value into the formula

k_{eq}=\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{35}

k_{eq}=8.93\ N/m

Hence, The equivalent stiffness of the string is 8.93 N/m.

3 0
3 years ago
What do MRI and ultrasound have in common as diagnostic imaging techniques? Check all that apply.
Gennadij [26K]

Answer:

low risk for tissue damage

uses radio waves

the last three are not correct

:)

8 0
3 years ago
Read 2 more answers
A 300 g glass thermometer initially at 23 ◦C is put into 236 cm3 of hot water at 87 ◦C. Find the final temperature of the thermo
DIA [1.3K]

Answer:

74^{\circ} C

Explanation:

We are given that

Mass of glass,m=300 g

T_1=23^{\circ}

Volume,V=236cm^3

Mass of water=density\times volume=1\times 236=236 g

Density of water=1g/cm^3

Temperature of hot water,T=87^{\circ}

Specific heat of glass,C_g=0.2cal/g^{\circ}C

Specific heat of water,C_w=1 cal/g^{\circ}C

Q_{glass}=m_gC_g(T_f-T_1)=300\times 0.2(T_f-23)

Q_{water}=m_wC_w(T_f-T)=236\times 1(T_f-87)

Q_{glass}+Q_{water}=0

300\times 0.2(T_f-23)+236\times 1(T_f-87)

60T_f-1380+236T_f-20532=0

296T_f=20532+1380=21912

T_f=\frac{21912}{296}=74^{\circ} C

5 0
3 years ago
For thermal equilibrium at temperature Tan appropriate measure of energy is kT where k is Boltzmann's constant. Convert the foll
Schach [20]

Answer:

1 cm⁻¹ =1.44K  1 ev = 1.16 10⁴ K

Explanation:

The relationship between temperature and thermal energy is

     E = K T

The relationship of the speed of light

    c =λ f = f / ν          1/λ= ν

The Planck equation is

          E = h f

Let's start the transformations

     c = f λ = f / ν        

     f = c ν

     E = h f

     E = h c ν

     E = KT

     h c ν = K T

     T = h c ν  / K =( h c / K) ν

Let's replace the constants

     h = 6.63 10⁻³⁴ J s

     c = 3 10⁸ m / s

     K = 1.38  10⁻²³ J / K

 

     v = 1 cm-1 (100 cm / 1 m) = 10² m-1

   

     T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 1 10²

     A = h c / K = 1,441 10⁻²

     T =  1.44K

     ν = 103 cm⁻¹ = 103 10² m

     T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 103 10²

     T = 148K

1 Rydberg = 1.097 10 7 m

As we saw at the beginning the λ=1 / v

     T = (h c / K) 1 /λ

     T = 1,441 10⁻²  1 / 1,097 10⁷

     T = 1.3 10⁻⁹ K

    E = 1Ev (1.6 10⁻¹⁹ J /1 eV) = 1.6 10⁻¹⁹ J

    E = KT

    T = E/K

    T = 1.6 10⁻¹⁹ /1.38 10⁻²³

    T = 1.16 10⁴ K

3 0
3 years ago
Other questions:
  • What is the main optical element of a refracting telescope?
    9·1 answer
  • Strength of the electric force imagine two 1.0-g bags of protons, one at the earth's north pole and the other at the south pole.
    14·1 answer
  • A ____ is a non solid state of matter in which the atoms and molecules are free to move past each other, as in a gas or liquid.
    15·2 answers
  • Why is it important to have only one set of chemical symbols in the world ?
    5·1 answer
  • Question 6 options: When a cannon is fired, the projectile moves forward. According to Newton's 3rd law, the cannon will want to
    6·1 answer
  • A flowerpot weighing 2 kilograms, what will be its speed at the end of 5 seconds?
    8·1 answer
  • A 19 nC charge is moved in a uniform electric field. The electric field does 5.3 μJ of work as the charge moves from point A to
    7·1 answer
  • Will give brainliest<br><br><br><br> The last one is 6.00 sec
    9·1 answer
  • Please help me with this! :)
    14·1 answer
  • PROVE YOUR INTELLIGNCE HERE!!!! (IMAGE ATTATCHED FOR YOUR CONVENIENCE)
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!