The time taken for the two balls to hit each other is 8 s.
The given parameters:
- <em>Acceleration of the rocket, a = 2 m/s²</em>
- <em>Length of the chamber, s = 4 m</em>
- <em>Speed of the first ball, = V1 = 0.3 m/s</em>
- <em>Speed of the second ball, V2 = 0.2 m/s</em>
The time taken for the two balls to hit each other is calculated by applying relative velocity formula as shown below;

Thus, the time taken for the two balls to hit each other is 8 s.
Learn more about relative velocity here: brainly.com/question/17228388
Answer:
A
Explanation:
because the speed divide by the frequency is equal to the wavelength(in meters)
5×10² m
Answer:
1.6 m
Explanation:
Given that the launch velocity of a toy car launcher is determined to be 5 m/s. If the car is to be launched from a height of 0.5 m.
The time for landing should be calculated by using the second equation of motion formula
h = Ut + 1/2gt^2
Let U = 0
0.5 = 1/2 × 9.8 × t^2
0.5 = 4.9t^2
t^2 = 0.5 / 4.9
t^2 = 0.102
t = 0.32 s
The target should be placed so that the toy car lands on it at:
Distance = 5 × 0.32
distance = 1.597 m
Distance = 1.6 m
Therefore, the target should be placed so that the toy car lands on it 1.6 metres away.
The complete question was calculate the period T assuming the smallest amplitude.
Using the equation;
T = 2 π√(L/g)
Where T is the period in seconds, L is the length of the rod or wire in meters and g is the acceleration due to gravity.
Hence; T = 2×3.14 × √(2/9.81)
= 6.28 × 0.4515
= 2.836 seconds