Weight is the measurement of the pull of gravity on an object, while mass is the measurement of the amount of matter that an object contains.
<span>if the airplane moves at a speed of 25 m/s the mass is 855kg</span>
<span>A) x = 41t
The classic equation for distance is velocity multiplied by time. And unfortunately, all of your available options have the form of that equation. In fact, the only difference between any of the equations is what looks to be velocity. And in order to solve the problem initially, you need to divide the velocity vector into a vertical velocity vector and a horizontal velocity vector. And the horizontal velocity vector is simply the cosine of the angle multiplied by the total velocity. So
H = 120*cos(70) = 120*0.34202 = 41.04242
So the horizontal velocity is about 41 m/s. Looking at the available options, only "A" even comes close.</span>
Answer:
a)T total = 2*Voy/(g*sin( α ))
b)α = 0º , T total≅∞ (the particle, goes away horizontally indefinitely)
α = 90º, T total=2*Voy/g
Explanation:
Voy=Vo*sinα
- Time to reach the maximal height :
Kinematics equation: Vfy=Voy-at
a=g*sinα ; g is gravity
if Vfy=0 ⇒ t=T ; time to reach the maximal height
so:
0=Voy-g*sin( α )*T
T=Voy/(g*sin( α ))
- Time required to return to the starting point:
After the object reaches its maximum height, the object descends to the starting point, the time it descends is the same as the time it rises.
So T total= 2T = 2*Voy/(g*sin( α ))
The particle goes totally horizontal, goes away indefinitely
T total= 2*Voy/(g*sin( α )) ≅∞
T total=2*Voy/g
Answer:
When the muscle is completely contract.
Explanation:
Remember the that maximum force of a muscle is when is completely contract. A characteristic of a muscle is that can contract and can relax in the opposite direction. In this way, when all the microfibers of the muscle are join together (they are contract) is when the maximum tissue force is applied.
With exercise the fibers of the muscles can grow or reproduce to strength the muscle.