I have the graphed answer right here
Answer:
take a actual picture maby
We have that
point C and point D have y = 0-----------> (the bottom of the trapezoid).
point A and point B have y = 4e ---------- > (the top of the trapezoid)
the y component of midpoint would be halfway between these lines
y = (4e+ 0)/2 = 2e.
<span>the x component of the midpoint of the midsegment would be halfway between the midpoint of AB and the midpoint of CD.
x component of midpoint of AB is (4d + 4f)/2.
x component of midpoint of CD is (4g + 0)/2 = 4g/2.
x component of a point between the two we just found is
[(4d + 4f)/2 + 4g/2]/2 = [(4d + 4f + 4g)/2]/2 = (4d + 4f + 4g)/4 = d + f + g.
</span>therefore
the midpoint of the midsegment is (d + f + g, 2e)
Please, see the offered decision:
1) common equation for lines is y=kx+b. If k₁=k₂ (for line 1 and line 2) ⇒ 'line 1' || 'line 2'.
2) for line 3x+5y=6 k= -3/5. It means (according to item 1) for unknown line k is the same (-3/5).
3) using points (0;3) it is easy to find parameter b (x=0, y=3) via y=kx+b:
3=0*(-3/5)+b ⇔ b=3.
4) finaly (k=-3/5; b=3):