Answer:
Maximizing Profit. Waterbrook Farm includes 240 acres of cropland. The farm owner wishes to plant this acreage in both corn and soybeans. The profit per acre in corn production is $325 and in soybeans is $180.A total of 320 hr of labor is available. Each acre of corn requires 2 hr of labor, whereas each acre of soybean requires 1 hr of labor. How should the land be divided between corn and soybeans in order to yield the maximum profit? What is the maximum profit?
Step-by-step explanation:
This area is equal to the sum of a circle with a radius of 5/2 in and a rectangle 5 by 15 in so:
A=πr^2+xy
A=π(2.5)^2+5*15
A=6.25π+75 in^2
A≈94.63 in^2 (to nearest hundredth) so
A≈95 in^2 (to nearest whole square inch)
Answer: 2
Step-by-step explanation: 1/2 x 4 = 4/2 = 2/1 = 2.
Answer:
Probably the 1st picture.
Step-by-step explanation:
keep in mind, the center is 0.