Answer:
Einstein extended the rules of Newton for high speeds. For applications of mechanics at low speeds, Newtonian ideas are almost equal to reality. That is the reason we use Newtonian mechanics in practice at low speeds.
Explanation:
<em>But on a conceptual level, Einstein did prove Newtonian ideas quite wrong in some cases, e.g. the relativity of simultaneity. But again, in calculations, Newtonian ideas give pretty close to correct answer in low-speed regimes. So, the numerical validity of Newtonian laws in those regimes is something that no one can ever prove completely wrong - because they have been proven correct experimentally to a good approximation.</em>
A steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.the speed of transverse waves on the wire would be 372.77 m/s
<h3>What is a sound wave?</h3>
It is a particular variety of mechanical waves made up of the disruption brought on by the movements of the energy. In an elastic medium like the air, a sound wave travels through compression and rarefaction.
For calculating the wave velocity of the sound waves generated from the piano can be calculated by the formula
V= √F/μ
where v is the wave velocity of the wave travel on the string
F is the tension in the string of piano
μ is the mass per unit length of the string
As given in question a steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.
The μ is the mass per unit length of the string would be
μ = 4.80/(1.150×1000)
μ = 0.0041739 kg/m
By substituting the respective values of the tension on the string and the density(mass per unit length) in the above formula of the wave velocity
V= √F/μ
V=√(580/0.0041739)
V = 372.77 m/s
Thus, the speed of transverse waves on the wire comes out to be 372.77 m/s
Learn more about sound waves from here
brainly.com/question/11797560
#SPJ1
The correct answer to the question is False i.e the tendency of an object in motion to remain in motion is not called the orbital speed.
EXPLANATION:
Before going to answer this question, first we have to understand Newton's first laws of motion.
As per Newton's first laws of motion, every body continues to be in state of rest or of uniform motion in a straight line unless and until it is compelled by some external unbalanced forces.
Hence, as long as no unbalanced force is acting on a moving object, it will be in motion. This tendency of a moving object to be in motion is called inertia of motion of the body.
Inertia of motion is the property of the body by virtue of which a moving body always tries to be in motion.
Hence, the tendency of an object in motion to remain in motion is not called as the orbital speed.
Explanation:
it holds protons and neutrons together