<span>4.2m/s
KE =(1/2)mv^2
insert your numbers to find how much kinetic energy you have.
then double that number and solve for v
which gives you how fast the sled will have to go in order to reach that kinetic energy</span>
The 4th one is correct
it starts from the sun then hay then rabbit then eagle
The period of the orbit would increase as well
Explanation:
We can answer this question by applying Kepler's third law, which states that:
"The square of the orbital period of a planet around the Sun is proportional to the cube of the semi-major axis of its orbit"
Mathematically,

Where
T is the orbital period
a is the semi-major axis of the orbit
In this problem, the question asks what happens if the distance of the Earth from the Sun increases. Increasing this distance means increasing the semi-major axis of the orbit,
: but as we saw from the previous equation, the orbital period of the Earth is proportional to
, therefore as
increases, T increases as well.
Therefore, the period of the orbit would increase.
Learn more about Kepler's third law:
brainly.com/question/11168300
#LearnwithBrainly
After one day, the rate of increase in Delta Cephei's brightness is;0.46
We are informed that the function has been used to model the brightness of the star known as Delta Cephei at time t, where t is expressed in days;
B(t)=4.0+3.5 sin(2πt/5.4)
Simply said, in order to determine the rate of increase, we must determine the derivative of the function that provides
B'(t)=(2π/5.4)×0.35 cos(2πt/5.4)
Currently, at t = 1, we have;
B'(1)=(2π/5.4)×0.35 cos(2π*1/5.4)
Now that the angle in the bracket is expressed in radians, we can use a radians calculator to determine its cosine, giving us the following results:
B'(1)=(2π/5.4)×0.3961
B'(1)≈0.46
To know more about:
brainly.com/question/17110089
#SPJ4