To solve this problem it is necessary to apply the concepts related to gravity as an expression of a celestial body, as well as the use of concepts such as centripetal acceleration, angular velocity and period.
PART A) The expression to find the acceleration of the earth due to the gravity of another celestial body as the Moon is given by the equation

Where,
G = Gravitational Universal Constant
d = Distance
M = Mass
Radius earth center of mass
PART B) Using the same expression previously defined we can find the acceleration of the moon on the earth like this,



PART C) Centripetal acceleration can be found throughout the period and angular velocity, that is

At the same time we have that centripetal acceleration is given as

Replacing



75 percent (calculated percentage %) of what number equals 27? Answer: 36.
Answer:
Part(a): the capacitance is 0.013 nF.
Part(b): the radius of the inner sphere is 3.1 cm.
Part(c): the electric field just outside the surface of inner sphere is
.
Explanation:
We know that if 'a' and 'b' are the inner and outer radii of the shell respectively, 'Q' is the total charge contains by the capacitor subjected to a potential difference of 'V' and '
' be the permittivity of free space, then the capacitance (C) of the spherical shell can be written as

Part(a):
Given, charge contained by the capacitor Q = 3.00 nC and potential to which it is subjected to is V = 230V.
So the capacitance (C) of the shell is

Part(b):
Given the inner radius of the outer shell b = 4.3 cm = 0.043 m. Therefore, from equation (1), rearranging the terms,

Part(c):
If we apply Gauss' law of electrostatics, then

I suppose that you wanted write "uncharged". The particles without electrical charge present in the nucleus are called neutrons.
Answer: B. bending light
Explanation:
The phenomenom of vision in human eye is thanks to refraction (when light changes its direction as it passes through one medium to another), and this is what the cornea and the lens do.
When the ray of light encounters the eye, the first thing it finds is the <u>cornea</u>, which<u> bends this ray and begins to form an image</u>, then light passes through the <u>pupil</u>, which is in charge of regulating the amount of light that enters in the eye.
After light travels through pupil it passes through the <u>lens</u>, where <u>the rays of light change the direction again in order to focus the formed image on the retina.
</u>
At this point it is important to note the formed image is downward, then the retina transforms light into electrical impulses that are sent to the brain through the optic nerve and finally the brain interprets these messages, and forms a right upward image.
In the image attached these parts can be seen.