Answer:use the app socratic
Step-by-step explanation:for all math answers
What’s the question? So you could put point s
Let the units of the problem be miles and hours. The first plane's distance from point p can be described by
... x = 150 -450t
The second plane's distance from point p can be described by
... y = 200 -450t
Since their flight paths are at right angles, the Pythagorean theorem can be used to describe the distance between them (s).
... s² = x² + y²
... s² = (150 -450t)² + (200 -450t)² = 22500 -135000t +202500t² +40000 -180000t +202500t²
... s² = 40500t² -315000t +62500 = 2500(162t² -126t +25)
... s = 50√(162t² -126t +25)
5<em>x</em>² - 7<em>x</em> + 2 = 0
5(<em>x</em>² - 7/5 <em>x</em>) + 2 = 0
5(<em>x</em>² - 7/5 <em>x</em> + 49/100 - 49/100) + 2 = 0
5(<em>x</em>² - 2 • 7/10 <em>x</em> + (7/10)²) - 49/20 + 2 = 0
5(<em>x</em> - 7/10)² - 9/20 = 0
5(<em>x</em> - 7/10)² = 9/20
(<em>x</em> - 7/10)² = 9/100
<em>x</em> - 7/10 = ± √(9/100)
<em>x</em> - 7/10 = ± 3/10
<em>x</em> = 7/10 ± 3/10
<em>x</em> = 10/10 = 1 or <em>x</em> = 4/10 = 2/5