Answer:
9 weeks
Step-by-step explanation:
5 x 9= 45
45+16=61
5x9+16=61
Answer:
thank you for this inspiration
Step-by-step explanation:
Answer:
![\sqrt[3]{2y^3} * 7\sqrt{18y} = 21(y^{\frac{3}{2}})(2^{\frac{5}{6}})](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B18y%7D%20%3D%2021%28y%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%282%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%29)
Step-by-step explanation:
The question is poorly formatted.
Given
![\sqrt[3]{2y^3} * 7\sqrt{18y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B18y%7D)
Required
Derive an equivalent expression
![\sqrt[3]{2y^3} * 7\sqrt{18y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B18y%7D)
Express 18 as 9 * 2
![\sqrt[3]{2y^3} * 7\sqrt{9 * 2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B9%20%2A%202y%7D)
Split the expression as follows:
![\sqrt[3]{2y^3} * 7\sqrt{9} * \sqrt{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B9%7D%20%2A%20%5Csqrt%7B2y%7D)
Take positive square root of 9
![\sqrt[3]{2y^3} * 7*3 * \sqrt{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%2A3%20%2A%20%5Csqrt%7B2y%7D)
![\sqrt[3]{2y^3} * 21 * \sqrt{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%2021%20%2A%20%5Csqrt%7B2y%7D)
![21*\sqrt[3]{2y^3} * \sqrt{2y}](https://tex.z-dn.net/?f=21%2A%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%20%20%5Csqrt%7B2y%7D)
The cube root can be rewritten to give:
![21*\sqrt[3]{2}*\sqrt[3]{y^3} * \sqrt{2y}](https://tex.z-dn.net/?f=21%2A%5Csqrt%5B3%5D%7B2%7D%2A%5Csqrt%5B3%5D%7By%5E3%7D%20%2A%20%20%5Csqrt%7B2y%7D)
![\sqrt[3]{y^3} = y^{3*\frac{1}{3}} = y](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E3%7D%20%3D%20y%5E%7B3%2A%5Cfrac%7B1%7D%7B3%7D%7D%20%3D%20y)
So, we have:
![21*\sqrt[3]{2} * y * \sqrt{2y}](https://tex.z-dn.net/?f=21%2A%5Csqrt%5B3%5D%7B2%7D%20%2A%20y%20%2A%20%20%5Csqrt%7B2y%7D)
Rewrite as:
![21y *\sqrt[3]{2} * \sqrt{2y}](https://tex.z-dn.net/?f=21y%20%2A%5Csqrt%5B3%5D%7B2%7D%20%20%2A%20%20%5Csqrt%7B2y%7D)
Split 
![21y *\sqrt[3]{2} * \sqrt{2} * \sqrt{y}](https://tex.z-dn.net/?f=21y%20%2A%5Csqrt%5B3%5D%7B2%7D%20%20%2A%20%20%5Csqrt%7B2%7D%20%2A%20%5Csqrt%7By%7D)
Collect Like Terms
![21y*\sqrt{y} *\sqrt[3]{2} * \sqrt{2}](https://tex.z-dn.net/?f=21y%2A%5Csqrt%7By%7D%20%2A%5Csqrt%5B3%5D%7B2%7D%20%20%2A%20%20%5Csqrt%7B2%7D)
Represent in index form

Apply law of indices




Hence:
![\sqrt[3]{2y^3} * 7\sqrt{18y} = 21(y^{\frac{3}{2}})(2^{\frac{5}{6}})](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B18y%7D%20%3D%2021%28y%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%282%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%29)
Answer:
D
Step-by-step explanation:
There can be infinite solutions
The surface area of the composite shape is 1560 square inches
<u>Step-by-step explanation:</u>
The surface area of the top cardboard is,
SA = 5 x area of each side
Because one side is attached with another cardboard box . So while finding the area only 5 sides are calculated.
SA = 5 ( 10 x 10)
= 500 square inches
The surface area of the rectangular prism cardboard,
Given that,
l = 20 in
w =15 in
h = 8 in
A = 2(lw + wh + hl) - 100
We are subtracting 100 because it is the area of one side of the square cardboard box on top of the rectangular prism box .
A = 2(300 + 120 + 160) - 100
= 2(580) - 100
= 1160-100
= 1060 square inches
Total surface area = SA + A
= 500 + 1060
= 1560 square inches