The answer would be
m= -25
Step-by-step explanation:
Since, y varies inversely as x.
![\therefore \: y = \frac{k}{x} \\ (k = constant \: of \: proportionality) \\ \therefore \: xy = k...(1) \\ plug \: y = 194 \: \: and \: \: x = - 13 \: in \: (1) \\ \therefore \: - 13 \times 194= k \\ \therefore \: k = - 2522 \\ substituting \: k = - 2522 \: in \: (1) \\ xy = - 2522...(2) \\ this \: is \: equation \: of \: variation. \\ plug \: x = 50 \: in \: (2) \\ 50 \times y = - 2522 \\ \therefore \:y = \frac{ - 2522}{50} \\ \huge \red{ \boxed{\therefore \:y = - 50.44}}](https://tex.z-dn.net/?f=%20%5Ctherefore%20%5C%3A%20y%20%3D%20%20%5Cfrac%7Bk%7D%7Bx%7D%20%20%5C%5C%20%28k%20%3D%20constant%20%5C%3A%20of%20%5C%3A%20proportionality%29%20%5C%5C%20%20%20%5Ctherefore%20%5C%3A%20xy%20%3D%20%20k...%281%29%20%5C%5C%20plug%20%5C%3A%20y%20%3D%20194%20%5C%3A%20%20%5C%3A%20and%20%5C%3A%20%20%5C%3A%20x%20%3D%20%20-%2013%20%5C%3A%20in%20%5C%3A%20%281%29%20%5C%5C%20%5Ctherefore%20%5C%3A%20%20-%2013%20%5Ctimes%20194%3D%20%20k%20%5C%5C%20%5Ctherefore%20%5C%3A%20k%20%3D%20%20-%202522%20%5C%5C%20substituting%20%5C%3A%20k%20%3D%20%20-%202522%20%5C%3A%20in%20%5C%3A%20%281%29%20%5C%5C%20xy%20%3D%20%20-%202522...%282%29%20%5C%5C%20this%20%5C%3A%20is%20%5C%3A%20equation%20%5C%3A%20of%20%5C%3A%20variation.%20%5C%5C%20plug%20%5C%3A%20x%20%3D%2050%20%5C%3A%20in%20%5C%3A%20%282%29%20%5C%5C%2050%20%5Ctimes%20y%20%3D%20%20-%202522%20%5C%5C%20%20%5Ctherefore%20%5C%3Ay%20%3D%20%20%5Cfrac%7B%20-%202522%7D%7B50%7D%20%20%5C%5C%20%20%20%5Chuge%20%5Cred%7B%20%5Cboxed%7B%5Ctherefore%20%5C%3Ay%20%3D%20%20%20-%2050.44%7D%7D)
Answer:
3. 160
4. 105
5. 95
6. 30
7. 86
8. 130
All triangles equal 180 so when you add the other 2 degrees in the triangle then subtract that by 180 then you get the third angle. The a straight line also equals 180 degrees so when you get the third angle subtract it by 180 then you get the answer to the "?"
That's how I was taught so, hope I got it all right! : )
We will use addition to find the length of the new, longer hose.
6.25 feet + 5.755 feet + 6.5 feet = 18.505 feet is the length of the new longer hose.