Answer:
The perimeter of rectangle is 
Step-by-step explanation:
Let
x-----> the length of the rectangle
y----> the width of the rectangle
we know that
----> equation A
---> equation B (area of the constructed figure)
substitute the equation A in equation B


using a graphing calculator -----> solve the quadratic equation
The solution is

Find the value of x

Find the perimeter of rectangle

A. Let x = cheese and
y = chocolate
2x + y = 25
x + y = 20
B. Subtract the second equation from the first.
2x + y = 25
-(x + y = 20)
-—————
x = 5
Plug 5 back in to the second equation and solve for y.
x + y = 20
5 + y = 20
Subtract 5 from both sides.
y = 15
5 cheese and 15 chocolate
Used elimination method because coefficients on the y values were both 1 so it was easy to subtract the equations and eliminate the y variable.
Answer:
Step-by-step explanation:


Answer: 34.64 m
Step-by-step explanation:
Given: A boat is 60 m from the base of a lighthouse.
The angle of depression between the lighthouse and the boat is 37°.
By using trigonometric ratios :

here x= 37°, side opposite to x = height of lighthouse (h) , side adjacent to x = 60 m

Hence, the lighthouse is 34.64 m tall.
Answer:
0.2514 = 25.14% probability that the diameter of a selected bearing is greater than 85 millimeters.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

Find the probability that the diameter of a selected bearing is greater than 85 millimeters.
This is 1 subtracted by the pvalue of Z when X = 85. Then



has a pvalue of 0.7486.
1 - 0.7486 = 0.2514
0.2514 = 25.14% probability that the diameter of a selected bearing is greater than 85 millimeters.