Which of the following is a true polynomial identity?
2 answers:
Answer:
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC (x^2+1)(x^2+a)-a = x^2(x^2+a+1)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
Step-by-step explanation:
I checked the other guys work an it is CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
Answer:
c. (x^2+1)(x^2+a)-a = x^2(x^2+a+1)
Step-by-step explanation:
You can use FOIL or the distributive property to expand the product of binomials, Then collect terms and factor out the common factor.
(x^2+1)(x^2+a)-a
= x^2(x^2 +a) +1(x^2 +a) -a
= x^4 +ax^2 +x^2 +a -a
= x^4 +ax^2 +x^2
= x^2(x^2 +a +1) . . . . . matches choice C
You might be interested in
Pretty sure it's 0, if you mean 2 to the power of 0
Answer:
Is there any answer choes or something?
Answer:
nothing there
Step-by-step explanation:
help with what
Answer:
5.
1. a
2.d
3.b
4.e
5.c
Step-by-step explanation:
can't do question 6 though, sorry about that