1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gladu [14]
3 years ago
13

Polypeptides are synthesized from amino acid building blocks. The condensation reaction between the growing polypeptide chain an

d the next amino acid to be added involves the loss of ________________.
A. a water molecule.
B. an amino group.
C. a carbon atom.
D. a carboxylic acid group.

Chemistry
1 answer:
Naya [18.7K]3 years ago
5 0

Answer:

A) a water molecule.

Explanation:

During the condensation of amino acids to form polypeptide, the carboxylic group of one amino acid reacts with amino group of another amino acid. This leads to formation of amid linkage.

The reaction is shown in the figure.

As shown, there is removal of water molecule during formation of polypeptide.

You might be interested in
7. Which of the following changes could be associated with either a chemical change OR a
Elan Coil [88]

Answer:

a: chemical change because the change cannot be reversed.

b: physical change because the action can be reversed.

c: chemical change.

d:chemical change.

any change that cannot be reversed is a chemical change and any change that can be reversed is a physical change.

5 0
2 years ago
Compare an ionic and a molecular compound in terms of how each is formed
GREYUIT [131]

Answer:

Molecular compounds are pure substances formed when atoms are linked together by sharing of electrons while ionic compounds are formed due to the transfer of electrons.

Molecular compounds are made due to covalent bonding while ionic compounds are made due to ionic bonding.

Explanation:

8 0
2 years ago
What going on in each spot
KATRIN_1 [288]

nothing ksbsshshhzvsjajbsjshjsgdvdjhsbsj

3 0
3 years ago
Read 2 more answers
Where the oxygen comes from the air (21% O2 and 79% N2). If oxygen is fed from air in excess of the stoichiometric amount requir
guajiro [1.7K]

Answer:

y_{O2} =4.3%

Explanation:

The ethanol combustion reaction is:

C_{2}H_{5} OH+3O_{2}→2CO_{2}+3H_{2}O

If we had the amount (x moles) of ethanol, we would calculate the oxygen moles required:

x*1.10(excess)*\frac{3 O_{2}moles }{etOHmole}

Dividing the previous equation by x:

1.10(excess)*\frac{3 O_{2}moles}{etOHmole}=3.30\frac{O_{2}moles}{etOHmole}

We would need 3.30 oxygen moles per ethanol mole.

Then we apply the composition relation between O2 and N2 in the feed air:

3.30(O_{2} moles)*\frac{0.79(N_{2} moles)}{0.21(O_{2} moles)}=121.414 (N_{2} moles )

Then calculate the oxygen moles number leaving the reactor, considering that 0.85 ethanol moles react and the stoichiometry of the reaction:

3.30(O_{2} moles)-0.85(etOHmoles)*\frac{3(O_{2} moles)}{1(etOHmoles)} =0.75O_{2} moles

Calculate the number of moles of CO2 and water considering the same:

0.85(etOHmoles)*\frac{3(H_{2}Omoles)}{1(etOHmoles)}=2.55(H_{2}Omoles)

0.85(etOHmoles)*\frac{2(CO_{2}moles)}{1(etOHmoles)}=1.7(CO_{2}moles)

The total number of moles at the reactor output would be:

N=1.7(CO2)+12.414(N2)+2.55(H2O)+0.75(O2)\\ N=17.414(Dry-air-moles)

So, the oxygen mole fraction would be:

y_{O_{2}}=\frac{0.75}{17.414}=0.0430=4.3%

6 0
3 years ago
Omg GUYS I NEED HELPPP
Ilia_Sergeevich [38]

27) Partial pressure of oxygen: 57.8 kPa

29) Final volume: 80 mL

30) Final volume: 8987 L

31) Due to property of water of being polar, ice floats on water

Explanation:

27)

In a mixture of gases, the total pressure of the mixture is the sum of the partial pressures:

p_T = p_1 + p_2 + ... + p_N

In this problem, the mixture contains 3 gases (helium, carbon dioxide and oxygen). We know that the total pressure is

p_T=201.4 kPa

We also know the partial pressures of helium and carbon dioxide:

P_{He}=125.4 kPa\\P_{CO_2}=18.2 kPa

The total pressure can be written as

p_T=p_{He}+p_{CO_2}+p_{O_2}

where p_{O_2} is the partial pressure of oxygen. Therefore, we find

p_{O_2}=p_T-p_{He}-p_{CO_2}=201.4-125.4-18.2=57.8 kPa

29)

Assuming that the pressure of the gas is constant, we can apply Charle's law, which states that:

"For an ideal gas at constant pressure, the volume of the gas is proportional to its absolute temperature"

Mathematically,

\frac{V}{T}=const.

where

V is the volume of the gas

T is the Kelvin temperature

We can re-write it as

\frac{V_1}{T_1}=\frac{V_2}{T_2}

Here we have:

V_1 = 42 mL (initial volume)

T_1=-89^{\circ}C+273=184 K is the initial temperature

T_2=77^{\circ}C+273=350 K is the final temperature

Solving for V2, we find the final volume:

V_2=\frac{V_1 T_2}{T_1}=\frac{(42)(350)}{184}=80 mL

30)

For this problem, we can use the equation of state for ideal gases, which can be written as

\frac{p_1 V_1}{T_1}=\frac{p_2 V_2}{T_2}

where in this problem:

p_1 = 102.3 kPa is the initial pressure

V_1=1975 L is the initial volume

T_1=25^{\circ}C+273=298 K is the initial temperature

p_2=21.5 kPa is the final pressure

T_2=12^{\circ}C+273=285 K is the final temperature

And solving for V2, we find the final volume of the balloon:

V_2=\frac{p_1 V_1 T_2}{p_2 T_1}=\frac{(102.3)(1975)(285)}{(21.5)(298)}=8987 L

31)

A molecule of water consists of two atoms hydrogen bond with an atom of oxygen (H_2 O) in a covalent bond.

While the molecul of water is overall neutral, due to the higher electronegativity of the oxygen atom, electrons are slightly shifted towards the oxygen atom; as a result, there is a slightly positive charge on the hydrogen side, and a slightly negative charge on the oxygen side (so, the molecules is said to be polar).

As a consequence, molecules of water attract each other, forming the so-called "hydrogen bonds".

One direct consequence of the polarity of water is that ice floats on liquid water.

Normally, for every substance on Earth, the solid state is more dense than the liquid state. However, this is not true for water, because ice is less dense than liquid water.

This is due to the polarity of water. In fact, when the temperature of water is decreased to freezing point and water becomes ice, the hydrogen bondings "force" the molecules to arrange in a lattice structure, so that the molecules become more spaced when they turn into solid state. As a result, ice occupies more volume than water, and therefore it is less dense, being able to float on water.

Learn more about ideal gases:

brainly.com/question/9321544

brainly.com/question/7316997

brainly.com/question/3658563

#LearnwithBrainly

4 0
2 years ago
Other questions:
  • Main job is to sort and package proteins and other substances in a plant cell
    11·1 answer
  • Is the entropy change favorable or not, when a nonpolar molecule is transferred from water to a nonpolar solvent?
    8·1 answer
  • The __is (are) an example of a transform boundary.
    10·1 answer
  • What would happen to a sealed bag of chips left in the sun?
    8·2 answers
  • What are the charges of the subatomic particles and where are they located in an atom?
    7·1 answer
  • WHERE WOULD YOU MOST LIKELY TO FIND A BOUNDARY BETWEEN A CONTINENTAL AND AN OCEANIC PLATE
    15·1 answer
  • Select the correct answer.
    11·1 answer
  • What kind of reaction is shown below?
    6·1 answer
  • 2. Moving down any group of the periodic table... (highlight the answer)
    7·1 answer
  • What has more particles: a mole of hydrogen or a mole of uranium?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!