Answer:
One way to look at this is to consider the forces acting on any point in a string.
For a very small portion of string F = M a must still hold. As M approaches zero the small portion of string would have to approach infinite acceleration if the net force on that portion of string were not zero.
One generally considers the net force acting on the center of mass of an object not the individual forces acting on each infinitesimal mass composing
the object.
Answer:
Explanation:
Capacity of a parallel plate capacitor C = ε₀ A/ d
ε₀ is permittivity whose value is 8.85 x 10⁻¹² , A is plate area and d is distance between plate.
C =( 8.85 X10⁻¹² X 27 X 10⁻⁴ ) / 3 X 10⁻³
= 79.65 X 10⁻¹³ F.
potential diff between plate = Charge / capacity
= 4.8 X 10⁻⁹ / 79.65 X 10⁻¹³
= 601 V
Electric field = V/d
= 601 / 3 x 10⁻³
= 2 x 10⁵ N/C
Force on proton
= charge x electric field
1.6 x 10⁻¹⁹ x 2 x 10⁵
= 3.2 x 10⁻¹⁴
Acceleration a = force / mass
= 3.2 x 10⁻¹⁴ / 1.67 x 10⁻²⁷
= 1.9 x 10¹³ m s⁻²
Distance travelled by proton = 3 x 10⁻³
3 x 10⁻³ = 1/2 a t²
t = 
t = 1.77 x 10⁻⁸ s
Answer:
Minimize the elevation or jump distance
Explanation:
The only action that minimizes, the impact force is to reduce as much as possible the height of the jump, the dog, ie the height from the jump point of the building. Since at the time of the jump its speed will increase every second at the rate of 9 [m/ s], that is this low effect of the gravitational acceleration of 9 [m/s^2]

where:
vf = final velocity [m/s]
g = gravity [m/s^2]
h = elevation [m]
As we can see while there is higher height, at a higher speed will impact the ground.
Answer:100 meters per min
Explanation:
Answer:
more time to change the momentum of falling rocks
Explanation:
Momentum is related to "mass in motion." So, if an object is moving, then it has momentum as it has its mass in motion. The amount of momentum is dependent upon how much and how fast the object is moving.
If an object is moving slowly, it means that the object is losing momentum.
Nets used to catch falling boulders on the side of rocky hillside roadways are more effective than rigid fences because their breakage is reduced by more time to change the momentum of falling rocks.