Answer:

Explanation:
We can solve the problem by using Kepler's third law, which states that the ratio between the cube of the orbital radius and the square of the orbital period is constant for every object orbiting the Sun. So we can write

where
is the distance of the new object from the sun (orbital radius)
is the orbital period of the object
is the orbital radius of the Earth
is the orbital period the Earth
Solving the equation for
, we find
![r_o = \sqrt[3]{\frac{r_e^3}{T_e^2}T_o^2} =\sqrt[3]{\frac{(1.50\cdot 10^{11}m)^3}{(365 d)^2}(180 d)^2}=9.4\cdot 10^{10} m](https://tex.z-dn.net/?f=r_o%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7Br_e%5E3%7D%7BT_e%5E2%7DT_o%5E2%7D%20%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%281.50%5Ccdot%2010%5E%7B11%7Dm%29%5E3%7D%7B%28365%20d%29%5E2%7D%28180%20d%29%5E2%7D%3D9.4%5Ccdot%2010%5E%7B10%7D%20m)
Answer:

Explanation:
As we know that the orbital speed is given as

here we know that
v = 5500 m/s


now we have


now acceleration due to gravity of planet is given as



now range of the projectile on the surface of planet is given as



A hypothesis is an educated prediction that can be tested.
The first thing you should know for this case is the definition of distance.
d = v * t
Where,
v = speed
t = time
We have then:
d = v * t
d = 9 * 12 = 108 m
The kinetic energy is:
K = ½mv²
Where,
m: mass
v: speed
K = ½ * 1500 * (18) ² = 2.43 * 10 ^ 5 J
The work due to friction is
w = F * d
Where,
F = Force
d = distance:
w = 400 * 108 = 4.32 * 10 ^ 4
The power will be:
P = (K + work) / t
Where,
t: time
P = 2.86 * 10 ^ 5/12 = 23.9 kW
answer:
the average power developed by the engine is 23.9 kW
Answer:
please give me brainlist and follow
Explanation:
4 degrees C turns out to be the temperature at which liquid water has the highest density. If you heat it or cool it, it will expand. ... Ice floats on top of lakes, preventing evaporation (and convection in the frozen layer), and lakes stay liquid underneath, allowing fish and other life to survive.