1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
deff fn [24]
3 years ago
10

A soft drink can is h centimeters tall and has a radius of r cm. The cost of material in the can is 0.0005 cents per cm2 and the

soda itself costs 0.002 cents per cm3. The cans are currently 4 cm tall and have a radius of 4 cm. Use calculus to estimate the effect on costs of increasing the radius.
Mathematics
2 answers:
lord [1]3 years ago
7 0

Answer:

Step-by-step explanation:

Given:

Cost of material, Cm = 0.0005 cents per cm2

Cost of soda, Cs = 0.002 cents per cm3

Height, h = 4 cm

Radius, r = 4 cm

Surface area of a cylinder, Ac = 2πrh + 2πr^2

= 2π × 4 × (4 + 4)

= 64π cm^2

Volume of a cylinder, V = πr^2 × h

= π × (4^2) × 4

= 64π cm^3

dAs = dAs/dr ×dr + dAs/dh × dh

= 2πh + 4πr × dr + 2πr × dh

= 8π + 16π × dr + 8π × dh

= 24π dr + 8π dh

dr = 0.1 cm

dh = -0.8 cm

dAs = 2.4π - 6.4π

= -4π × 0.0005

Cost = -0.00628

dV = dV/dr ×dr + dV/dh × dh

= 2πrh× dr + πr^2 × dh

= 32π × dr + 16π × dh

dr = 0.1 cm

dh = -0.8 cm

dAs = 3.2π - 12.8π

= -9.6π × 0.002

Cost = -0.603

Total cost = -0.00628 - 0.603

= -0.609

kvasek [131]3 years ago
3 0

Answer:

Step-by-step explanation:

Given:

  • The cost of material in the can is 0.0005 cents per cm2
  • The soda itself costs 0.002 cents per cm3.

1. The Volume of the can is: V = Sh = πr^{2} h = 3.14*4^{2} *4 = 200.96 cm^{3}

2. The surface area of the can is

S = 2πr^{2} + 2rhπ = 2*3.14*4^{2} + 2*4*4*3.14

= 100.48 + 100.48

= 200.96 cm^{2}

The total cost of the can is:  0.0005*200.96cm^{2}  + 0.002*200.96 cm^{3}

If we increase the radius, the cost will be increased as well. Because the volume and the surface area will increase.

You might be interested in
2.
Gekata [30.6K]

Answer:

A. A(n) = 150 • (0.74)^n–1 ; 33.29 cm

Step-by-step explanation:

This is a geometric sequence.

a%5B1%5D=1.5m=150cm, r=0.74

The formula is

a%5Bn%5D=a%5B1%5Dr%5E%28n-1%29

Just substitute a1 = 150cm and r = 0.74

a%5Bn%5D=150%280.74%29%5E%28n-1%29

That's the rule.

For the second part, substitute n = 6

cm.

7 0
2 years ago
I cannot find anyone who will stand by my side for better or worst. So much Pain
zheka24 [161]

Answer:

Kelz come on stop it please your okay

Step-by-step explanation:

5 0
2 years ago
I need help can some please answer this 2 2/3+1 1/2
irakobra [83]

Answer:

25/6 or 4 1/6

Step-by-step explanation:

1) convert these fractions to improper fractions first:

8/3+3/2

make like denominators  by multiplying 8/3 by 2 and 3/2 by 3

so 8*2/3*2=16/6

3*3/2*3=9/6

16/6+9/6=25/6

Hope this helps!

3 0
3 years ago
Read 2 more answers
Need help asap. Thanks in advance
laila [671]

Answer: 19º

Step-by-step explanation:

Use sine

Sin=\frac{opposite}{hypothenuse}

sin=\frac{2}{6}\\ sin=0.333\\sin^-^1=19

5 0
3 years ago
What is 4/3 divided by 5
Ivanshal [37]

Answer:

4 over 15 is the answer ....

7 0
2 years ago
Other questions:
  • Consider the given function and the given interval. f\(x\) = (x - 7)**2 text(, ) [5 text(, ) 11] (a) Find the average value fave
    8·1 answer
  • Find 16% of 370. Round to the nearest 10th if necessary.
    9·1 answer
  • What is the endpoint formula given midpoint?
    6·1 answer
  • which equation represents this sentence? five more than three times the number is one-third more than the sum of the number and
    6·1 answer
  • Probability:
    9·1 answer
  • Find the 15th term of the geometric sequence 2 , -8 , 32
    5·1 answer
  • Can someone explain how to do #3?
    5·2 answers
  • What is the circumstance of the trampoline including its outer edge? Use 3.14 for pie
    11·1 answer
  • You ordered pizza for delivery that cost $14.20. You want to tip the driver 15%. How much tip are you going to leave? How much t
    9·2 answers
  • △ABC has vertices A(-2, 0), B(0,8), and C(4,2) Find the equations of the three altitudes of △ABC
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!