The point-slope form and standard form of (3,1) and (4, 2) are y – 1 = x – 3 and x – y = 2 respectively
<u>Solution:</u>
Given, two points are (3, 1) and (4, 2)
We have to find that a line that passes through the given two points.
First let us find the slope of the line that passes through given two points.
<em><u>Slope of line "m" is given as:</u></em>
![\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}](https://tex.z-dn.net/?f=%5Cmathrm%7Bm%7D%3D%5Cfrac%7By_%7B2%7D-y_%7B1%7D%7D%7Bx_%7B2%7D-x_%7B1%7D%7D)
![\text { where, }\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right) \text { are two points on line. }](https://tex.z-dn.net/?f=%5Ctext%20%7B%20where%2C%20%7D%5Cleft%28x_%7B1%7D%2C%20y_%7B1%7D%5Cright%29%20%5Ctext%20%7B%20and%20%7D%5Cleft%28x_%7B2%7D%2C%20y_%7B2%7D%5Cright%29%20%5Ctext%20%7B%20are%20two%20points%20on%20line.%20%7D)
![\text { Here } x_{1}=3 \text { and } y_{1}=1 \text { and } x_{2}=4 \text { and } y_{2}=2](https://tex.z-dn.net/?f=%5Ctext%20%7B%20Here%20%7D%20x_%7B1%7D%3D3%20%5Ctext%20%7B%20and%20%7D%20y_%7B1%7D%3D1%20%5Ctext%20%7B%20and%20%7D%20x_%7B2%7D%3D4%20%5Ctext%20%7B%20and%20%7D%20y_%7B2%7D%3D2)
![\mathrm{m}=\frac{2-1}{4-3}=\frac{1}{1}=1](https://tex.z-dn.net/?f=%5Cmathrm%7Bm%7D%3D%5Cfrac%7B2-1%7D%7B4-3%7D%3D%5Cfrac%7B1%7D%7B1%7D%3D1)
<em><u>The point slope form is given as:</u></em>
![y-y_{1}=m\left(x-x_{1}\right)](https://tex.z-dn.net/?f=y-y_%7B1%7D%3Dm%5Cleft%28x-x_%7B1%7D%5Cright%29)
![\text { where } m \text { is slope and }(x_1, y_1) \text { is point on the line. }](https://tex.z-dn.net/?f=%5Ctext%20%7B%20where%20%7D%20m%20%5Ctext%20%7B%20is%20slope%20and%20%7D%28x_1%2C%20y_1%29%20%5Ctext%20%7B%20is%20point%20on%20the%20line.%20%7D)
y – 1 = 1(x – 3)
y - 1 = x - 3
Line equation in point slope form is y – 1 = x – 3 -- eqn 1
Now, line equation in standard form i.e. ax + by = c is found out by eqn 1
y – 1 = x – 3
x – y = 3 – 1
x – y = 2
Hence, the line equation in point slope form and standard forms are y – 1 = x – 3 and x – y = 2 respectively