Answer:
Explanation:
The formula for gravitational potential energy is
Ep = m · g · h Assuming that the acceleration is g = 10m/s²
Ep = 45.4 · 10 · 21.9 = 9,942.6 J
God is with you!!!
To solve this problem we will apply the principles of energy conservation. On the one hand we have that the work done by the non-conservative force is equivalent to -30J while the work done by the conservative force is 50J.
This leads to the direct conclusion that the resulting energy is 20J.
The conservative force is linked to the movement caused by the sum of the two energies, therefore there is an increase in kinetic energy. The decrease in the mechanical energy of the system is directly due to the loss given by the non-conservative force, therefore there is a decrease in mechanical energy.
Therefore the correct answer is A. Kintetic energy increases and mechanical energy decreases.
Answer:
90 J
Explanation:
W=fd
W=(75)(1.2)
W= 90 J
Hydrostatic pressure is independent of directions.
<h2>
Answer: 7020.117 m/s</h2>
Explanation:
The velocity of a satellite describing a circular orbit is<u> constant</u> and defined by the following expression:
(1)
Where:
is the gravity constant
the mass of the massive body around which the satellite is orbiting, in this case, the Earth
.
the radius of the orbit (measured from the center of the planet to the satellite).
This means the radius of the orbit is equal to <u>the sum</u> of the average radius of the Earth
and the altitude of the satellite above the Earth's surface
.
Note this orbital speed, as well as orbital period, does not depend on the mass of the satellite. It depends on the mass of the massive body (the Earth).
Now, rewriting equation (1) with the known values: