The hot gases produce their own characteristic pattern of spectral lines, which remain fixed as the temperature increases moderately.
<h3><u>Explanation: </u></h3>
A continuous light spectrum emitted by excited atoms of a hot gas with dark spaces in between due to scattered light of specific wavelengths is termed as an atomic spectrum. A hot gas has excited electrons and produces an emission spectrum; the scattered light forming dark bands are called spectral lines.
Fraunhofer closely observed sunlight by expanding the spectrum and a huge number of dark spectral lines were seen. "Robert Bunsen and Gustav Kirchhoff" discovered that when certain chemicals were burnt using a Bunsen burner, atomic spectra with spectral lines were seen. Atomic spectral pattern is thus a unique characteristic of any gas and can be used to independently identify presence of elements.
The spectrum change does not depend greatly on increasing temperatures and hence no significant change is observed in the emitted spectrum with moderate increase in temperature.
For the answer to the question above,
the distance from i to j is 5 parts
(2 parts from i to k and 3 parts from k to j)
The y distance from i to j is
10 - 2 = 8
Each part is 8/5 = 1.6
Therefore the distance between the 2 parts from i to k is 3.2
From the y coordinate of I which is 2 plus the 3.2 to point k
2 + 3.2 = 5.2
Answer y =5.2
Now just convert that to fraction and that will be the answer
Answer:
the answer is at the BOTTOM OF THEIR QUESTION
Explanation:
IT IS CORRECT BTW
Answer:
SURE!!!...
But what to calculate!!!....
Spreads out in the medium, first choice