C) The president submits the federal budget every year.
Hope this helps you!
Answer:
A) s=1/2at^2
t=√(2s/a)=√(2x400)/10.0)=9.0s
B) v=at
v=10.0x9=90m/s
consider the motion in Y-direction
v₀ = initial velocity = 29 Sin62 = 25.6 m/s
a = acceleration = - 9.8 m/s²
t = time of travel
Y = vertical displacement = - 0.89 m
using the equation
Y = v₀ t + (0.5) a t²
- 0.89 = (25.6) t + (0.5) (- 9.8) t²
t = 5.3 sec
consider the motion along the horizontal direction :
v₀ = initial velocity = 29 Cos62 = 13.6 m/s
a = acceleration = 0 m/s²
t = time of travel = 5.3 sec
X = horizontal displacement =?
using the equation
X = v₀ t + (0.5) a t²
X = (13.6) (5.3) + (0.5) (0) t²
X = 72.1 m
d = distance traveled by the center fielder to catch the ball = 107 - x = 107 - 72.1 = 34.9 m
t = time taken = 5.3 sec
v = speed of center fielder
using the equation
v = d/t
v = 34.9/5.3
v = 6.6 m/s
Answer:
The answer is I=70,513kgm^2
Explanation:
Here we will use the rotational mechanics equation T=Ia, where T is the Torque, I is the Moment of Inertia and a is the angular acceleration.
When we speak about Torque it´s basically a Tangencial Force applied over a cylindrical or circular edge. It causes a rotation. In this case, we will have that T=Ft*r, where Ft is the Tangencial Forge and r is the radius
Now we will find the Moment of Inertia this way:
->
Replacing we get that I is:
Then
In case you need to find extra information, keep in mind the Moment of Inertia for a solid cylindrical wheel is: