1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fed [463]
3 years ago
7

Given that cos 53◦ is approximately 0.601, write the sine of complementary angle.

Mathematics
1 answer:
Mrrafil [7]3 years ago
7 0

Answer:

  sin(37°) ≈ 0.601

Step-by-step explanation:

The cosine of an angle is equal to the sine of its complement, and vice versa.

  sin(37°) = cos(53°) ≈ 0.601

You might be interested in
Identify the asymptotes and state the end behavior of the function f(x)=5x/x-25
AnnyKZ [126]

Using it's concepts, it is found that for the function f(x) = \frac{5x}{x - 25}:

  • The vertical asymptote of the function is x = 25.
  • The horizontal asymptote is y = 5. Hence the end behavior is that y \rightarrow 5 when x \rightarrow \infty.

<h3>What are the asymptotes of a function f(x)?</h3>

  • The vertical asymptotes are the values of x which are outside the domain, which in a fraction are the zeroes of the denominator.
  • The horizontal asymptote is the value of f(x) as x goes to infinity, as long as this value is different of infinity. They also give the end behavior of a function.

In this problem, the function is:

f(x) = \frac{5x}{x - 25}

For the vertical asymptote, it is given by:

x - 25 = 0 -> x = 25.

The horizontal asymptote is given by:

y = \lim_{x \rightarrow \infty} f(x) = \lim_{x \rightarrow \infty} \frac{5x}{x - 25} = \lim_{x \rightarrow \infty} \frac{5x}{x} = 5

More can be learned about asymptotes at brainly.com/question/16948935

#SPJ1

8 0
2 years ago
The variables a, b, and c represent polynomials where a = x 1, b = x2 2x − 1, and c = 2x. what is ab c in simplest form?
inna [77]
If you would like to write a * b + c in simplest form, you can do this using the following steps:

a = x + 1
b = x^2 + 2x - 1
c = 2x
a * b + c = (x + 1) * (x^2 + 2x - 1) + 2x = x^3 + 2x^2 - x + x^2 + 2x - 1 + 2x = x^3 + 3x^2 + 3x - 1

The correct result would be x^3 + 3x^2 + 3x - 1.




7 0
3 years ago
Read 2 more answers
A snowstorm lasted for three days. Durning the storm, 8 inches of snow fell on the first day, 6 inches of snow fell on the secon
TiliK225 [7]

Answer:

Basically we need to add all of the inches

Step-by-step explanation:

so...

8 inch ( first day ) + 6 inch ( second day) + 9 inch ( third day )

add all those inches together what do you get?

23 inches in total. So altogether 23 inches of snow fell during the 3-day storm

7 0
3 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
If f(x) = –3x – 5 and g(x) = 4x – 2, find (f – g)(x).
Vikki [24]

Answer:

(f-g)(x)=-7x-3

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Paper and Pencil Construction: Construct a Line Perpendicular to a Given Line through a Point on the Line
    10·1 answer
  • 4/7 of the children in a pool are girls. What is the ratio of girls to boys?
    9·1 answer
  • The length of a board is 55 inches. The board needs to be cut into 2 pieces with one piece 5 inches longer than the other piece.
    5·1 answer
  • Factor the following expression 10x^5+5x^3-14x^2-7
    12·1 answer
  • If 3x^2+2xy+y^2=2 then the value of dy/dx at x=1 is
    6·1 answer
  • What is this problem
    10·1 answer
  • Find the repeating decimal between -2 1/3 and -2 1/5.
    6·1 answer
  • Which word best describes the degree of overlap between the two data sets? moderate none high low Two line plots with the same s
    10·2 answers
  • A striped marlin can swim at a rate of 70 miles per hour is this a faster or slower than a sailfish which takes 30 minutes to sw
    7·1 answer
  • The nearest star to the earth is<br><img src="https://tex.z-dn.net/?f=%20%7B2%20%5Ctimes%20%20%2B%204%7D%5E%7B2%7D%20%20%3D%20%2
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!