Recursive
formula is one way of solving an arithmetic sequence. It contains the initial
term of a sequence and the implementing rule that serve as a pattern in finding
the next terms. In the
problem given, the 6th term is provided, therefore we can solve for the initial
term in reverse. To make use of it, instead of multiplying 1.025, we should divide it after
deducting 50 (which supposedly is added).
<span>
Therefore, we perform the given formula: A (n) = <span>1.025(an-1) +
50
</span></span>a(5) =1.025 (235.62) + 50 = 291.51
a(4) = 1.025 (181.09) + 50 = 235.62
a(3) = 1.025 (127.89) + 50 = 181.09
a(2) = 1.025 (75.99) + 50 = 127.89
a(1) = 1.025 (25.36) + 50 = 75.99
a(n) = 25.36
The terms before a(6) are indicated above, since a(6) is already given.
So, the correct answer is <span>
A. $25.36, $75.99.</span>
The number 0.59136363636363636... is an irrational numbers
<h3>How to determine the number type?</h3>
The number is given as:
Number = 0.59136363636363636...
The three dots at the end of the number implies that the numbe is a non-terminating decimal
All non-terminating decimal are irrational numbers
Hence, the number 0.59136363636363636... is an irrational numbers
Read more about irrational numbers at
brainly.com/question/11919233
#SPJ1
For this case , the parent function is given by [tex f (x) =x^2
[\tex]
We apply the following transformations
Vertical translations :
Suppose that k > 0
To graph y=f(x)+k, move the graph of k units upwards
For k=9
We have
[tex]h(x)=x^2+9
[\tex]
Horizontal translation
Suppose that h>0
To graph y=f(x-h) , move the graph of h units to the right
For h=4 we have :
[tex ] g (x) =(x-4) ^ 2+9
[\tex]
Answer :
The function g(x) is given by
G(x) =(x-4)2 +9
Answer:
y= -2x +1
Step-by-step explanation:
<u>slope- intercept form</u><u>:</u>
y= mx +c, where m us the gradient and c is the y-intercept.
Let's find the value of m first using the gradient formula.
Gradient= 

y= -2x +c
To find the value of c, substitute a pair of coordinates.
When x= -1, y=3,
3= -2(-1) +c
3= 2 +c
c= 3 -2
c= 1
Thus the equation of the line is y= -2x +1.