Using proportions, it is found that it takes 886 more mini-bears than regular-bears to have the same weight as one super-bear.
<h3>What is a proportion?</h3>
A proportion is a fraction of a total amount, and the measures are related using a rule of three. Due to this, relations between variables, either direct(when both increase or both decrease) or inverse proportional(when one increases and the other decreases, or vice versa), can be built to find the desired measures in the problem, or equations to find these measures.
10 mini-bears weights to 12.1 grams, hence the weight of a mini-bear is of:
12.1/10 = 1.21 grams.
10 regular bears weights to 23.1 grams, hence the weight of a regular bear is of:
23.1/10 = 2.31 grams.
1 super bear weights to 2250 grams, hence the proportion between the <u>weight of a super bear and the weight of a mini-bear</u> is:
2250/1.21 = 1860.
The proportion between the <u>weight of a super bear and the weight of a regular bear</u> is:
2250/2.31 = 974.
The difference of proportions is given by:
1860 - 974 = 886.
It takes 886 more mini-bears than regular-bears to have the same weight as one super-bear.
More can be learned about proportions at brainly.com/question/24372153
#SPJ1
Answer:
I'm gemini
Step-by-step explanation:
I won't report u cause I need these points
░░░░░▐▀█▀▌░░░░▀█▄░░░
░░░░░▐█▄█▌░░░░░░▀█▄░░
░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░
░░░░▄▄▄██▀▀▀▀░░░░░░░
░░░█▀▄▄▄█░▀▀░░
░░░▌░▄▄▄▐▌▀▀▀░░ This is Bob
▄░▐░░░▄▄░█░▀▀ ░░
▀█▌░░░▄░▀█▀░▀ ░░ Copy And Paste Him onto all of ur brainly answers
░░░░░░░▄▄▐▌▄▄░░░ So, He Can Take
░░░░░░░▀███▀█░▄░░ Over brainly
░░░░░░▐▌▀▄▀▄▀▐▄░░
░░░░░░▐▀░░░░░░▐▌░░
░░░░░░█░░░░░░░░█░
Answer:
1899
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 3234
Standard deviation = 871
Percentage of newborns who weighed between 1492 grams and 4976 grams:
1492 = 3234 - 2*871
So 1492 is two standard deviations below the mean.
4976 = 3234 + 2*871
So 4976 is two standard deviations above the mean.
By the Empirical Rule, 95% of newborns weighed between 1492 grams and 4976 grams.
Out of 1999:
0.95*1999 = 1899
So the answer is 1899