1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katarina [22]
3 years ago
7

Daniel is climbing up a cliff at a rate of 2 meters per minute. What is his rate in feet per hour? about 98.4 feet per hour abou

t 197 feet per hour about 36.6 feet per hour about 394 feet per hour
Mathematics
2 answers:
vagabundo [1.1K]3 years ago
6 0
197 feet per hour.bec
Pachacha [2.7K]3 years ago
6 0
The correct answer is 394 ft per hour
<span>Use unit conversion factors. Check to make sure the conversion factor units will cancel out the original units and leave the desired units. Note that 1 meter is approximately 3.28 feet.</span>
You might be interested in
How do I do the problem?
Zanzabum
UMMMM you do the problem with the POWER OF DANK MEMES :D:D:D:DD:D:D:D:D:D:D:D:D:D:DD:D:D:D:D:D:D:D:D:D:D:D:D
TROLLOLOLOOLOLOLOOLOLOLOLOLOLOLOLOLOLOLOL
6 0
3 years ago
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
Please help me with another problem
lorasvet [3.4K]
"one" will fill both blanks.
8 0
3 years ago
Calculating cos-1 ( help is gladly appreciated :) )
Alekssandra [29.7K]

Answer:

\frac{3\pi}{4}

(Assuming you want your answer in radians)

If you want the answer in degrees just multiply your answer in radians by \frac{180^\circ}{\pi} giving you:

\frac{3\pi}{4} \cdot \frac{180^\circ}{\pi}=\frac{3(180)}{4}=135^{\circ}.

We can do this since \pi \text{ rad }=180^\circ (half the circumference of the unit circle is equivalent to 180 degree rotation).

Step-by-step explanation:

\cos^{-1}(x) is going to output an angle measurement in [0,\pi].

So we are looking to solve the following equation in that interval:

\cos(x)=-\frac{\sqrt{2}}{2}.

This happens in the second quadrant on the given interval.

The solution to the equation is \frac{3\pi}{4}.

So we are saying that \cos(\frac{3\pi}{4})=\frac{-\sqrt{2}}{2} implies \cos^{-1}(\frac{-\sqrt{2}}{2})=\frac{3\pi}{4} since \frac{3\pi}{4} \in [0,\pi].

Answer is \frac{3\pi}{4}.

4 0
3 years ago
The distance y in miles traveled by a striped marlin in x hours is shown in the graph. Each ocean creature’s distance in miles i
julsineya [31]

9514 1404 393

Answer:

  swordfish

Step-by-step explanation:

The graph shows the marlin travels 50 miles in 1 hour, and 150 miles in 3 hours. These numbers can be compared directly to those given for the tuna (43.5 miles in 1 hour) and the wahoo fish (144 miles in 3 hours).

The speeds of the swordfish and shark are the coefficients of x in their respective equations. The swordfish travels 60 mph, so is faster than the marlin. The shark travels 31 mph, so is slower.

7 0
3 years ago
Other questions:
  • What is 10.22-3.651 will some one help me plz
    9·2 answers
  • What is (a+b) cubed when a=9; b=-4<br><br> Plz help!
    7·1 answer
  • How to solve 4|x+6|greater than or equal to 20
    6·1 answer
  • Use the drawing tool(s) to form the correct answer on the provided graph.
    6·1 answer
  • Whats the elimination of 3x-4y=2<br> 2x-4y=-4
    11·1 answer
  • You join a bowling team. The first week, you bowl three games to determine your average. Your scores are 138, 128, and 151. What
    12·2 answers
  • Square root 2x + 3 equals X
    7·1 answer
  • Which verbal expression represents the following algebraic expression?<br> 10+4(9)
    15·1 answer
  • Let X be a normal random variable with mean 3 and variance 4. (a) Find the probability P(2 &lt; X &lt; 6). (b) Find the value c
    5·1 answer
  • 20 POINTS <br> Solve for x. -x/3=2<br><br><br> A.x = 1<br> B.x = -1<br> C.x = 6<br> D.x = -6
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!