Answer:
At a combined speed of 6 in/min, it takes us 24 mins to clean the wall
Step-by-step explanation:
Since the question did not provide the speed with which each student cleans, we can make assumptions. This is so that we can solve the question before us
Assuming student 1 cleans at a speed of 2 inches per minute, student 2 cleans at a speed of 2½ inches per minute & student 3 cleans at a speed of 1½ inches per minute.
Let's list the parameters we have:
Height of wall (h) = 12 ft, Speed (student 1) = 2 in/min, Speed (student 2) = 2½ in/min, Speed (student 3) = 1½ in/min
Speed of cleaning wall = Height of wall ÷ Time to clean wall
Time to clean wall (t) = Height of wall ÷ Speed of cleaning wall
since students 1, 2 and 3 are working together, we will add their speed together; v = (2 + 2½ + 1½) = 6 in/min
1 ft = 12 in
Time (t) = h ÷ v = (12 * 12) ÷ 6 = 144 ÷ 6
Time (t) = 24 mins
Answer:
Read below.
Step-by-step explanation:
If you include going back home, then its
3710 miles × 5 days =
<u>18,550 miles</u>
If you don't include going back home, then it's
3710 miles ÷ 2 × 5 days =
1855 miles × 5 days =
<u>9,275 miles</u>
Answer:
Step-by-step explanation:
The ratio of corresponding sides DN and KI is 12 : 4 = 3 : 1. The same ratio applies to altitudes DQ and KO. Since the difference between these altitudes is 6 and the difference between their ratio units is 3-1 = 2, each ratio unit must stand for 6/2 = 3 units of linear measure. That is, ...
DQ = (3 units)·3 = 9 units
KO = (3 units)·1 = 3 units
Then the base lengths QN and OI can be found from the Pythagorean theorem:
KI² = KO² +OI²
4² = 3² +OI²
OI = √(16 -9)
OI = √7
QN = 3·OI = 3√7
A=24
Find the area by multiplying both diagonals and dividing them by 2. Like so: And you might be wondering how to do that. By using the pythagorean theorem and some simple addition, you could get the answer. One diagonal is 8 and the other is 6....so, 8x6=48....48/2=24
Please let me know if you have any other questions!