E(X) = 0(0.7) + 1(0.2) + 2(0.1) = 0.2 + 0.2 = 0.4
The expected daily loss due to blackouts = 0.4 * $500 = $200
Var(X) = 0(0.7 - 0.4)^2 + 1(0.2 - 0.4)^2 + 2(0.1 - 0.4)^2 = 0.04 + 0.18 = 0.22
The expected daily variance due to blackouts = 0.22 * $500 = $110
Answer:
24) $495
25) 14%
26) 25/X = 83/100
27) 0.7p
28) x + .085x and 1.085x
29) $221.90
30) $24.10
31) $6.13
32) 40%
Step-by-step explanation:
24) 600 - (600 × 0.25) = 450
450 × 1.10 = 495
25) (106 - 93) ÷ 93 = 0.13978
0.13978 × 100 = 13.978 ~ 14
27) 1.0 - 0.3 = 0.7
28) 1.00 + 0.085 = 1.085
29) 100% - 15% = 85%
240 × 0.85 = 204
204 × 1.0875 = 221.85
30) 25.89 × 4 = 103.56
103.56 + 179.99 = 283.55
283.55 × 0.085 = 24.10175
31) 8.75 × 0.70 = 6.125
32) 80 - (80 × 0.40) = 48
Answer:

Step-by-step explanation:
Given



Required
Determine the coordinates of the centroid
Represent the coordinates with C.
C is calculated as follows:

Substitute values of x and y in the given equation



<em>The above is the coordinate of the centroid</em>