So assuming that the total =27
r+b=27
r=-5+3b
r=3b-5
subsitute 3b-5 for r in first equation
3b-5+b=27
4b-5=27
add 5
4b=32
divide by 4
b=8
subsitute
b+r=27
8+r=27
subtracct 8
r=19
red=19
blue=8
Now that we’ve learned how to solve word problems involving the sum of consecutive integers, let’s narrow it down and this time, focus on word problems that only involve finding the sum of consecutive even integers.
But before we start delving into word problems, it’s important that we have a good understanding of what even integers, as well as consecutive even integers, are.
Even Integers
We know that even numbers are integers that can be divided exactly or evenly by 22. Thus, the general form of the even integer nn, is n = 2kn=2k, where kk is also an integer.
In other words, since even numbers are the multiples of 22, we can represent an even integer nn by 2k2k, where kk is also an integer. So if we have the even integers 1010 and 1616,
5c^5 + 60c^4 + 180c^3
find the GCF, 5c³
5c³(5c^5 + 60c^4 + 180c^3/ 5c^3)
5c³(c² + 12c + 36)
5c³(c² + 2(c)(6) + 6²)
5c³(c + 6)² <<< the answer.
hope this helps, God bless!
S^2 + s^2 = 9^2 => 2s^2 = 81 => s^2 = 81/2 => side length s = 9(sqrt(2))/2 = 6.37 cm.
Simplifying
5(7x + -3) = 230
Reorder the terms:
5(-3 + 7x) = 230
(-3 * 5 + 7x * 5) = 230
(-15 + 35x) = 230
Solving
-15 + 35x = 230
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '15' to each side of the equation.
-15 + 15 + 35x = 230 + 15
Combine like terms: -15 + 15 = 0
0 + 35x = 230 + 15
35x = 230 + 15
Combine like terms: 230 + 15 = 245
35x = 245
Divide each side by '35'.
x = 7
Simplifying
x = 7